Science News
from research organizations

Researching living cancer cells

Date:
February 10, 2011
Source:
Karolinska Institutet
Summary:
New technology has made it possible to examine living cells in a microscope while at the same time collecting information that can be used to create mathematical models of the cells’ behavior – a new field of research known as ‘systems microscopy’. Scientists hope it will revolutionize biomedical research.
Share:
       
FULL STORY

New technology has made it possible to examine living cells in a microscope while at the same time collecting information that can be used to create mathematical models of the cells' behaviour -- a new field of research known as 'systems microscopy'. Scientists at the Center for Biosciences (CB), Karolinska Institutet, are now to coordinate a multidisciplinary initiative to develop this field further, which is hoped to revolutionise biomedical research.

The project is one of two international research networks financed by the EU that will be based at the centre.

The two projects -- Systems Microscopy Network of Excellence (NoE) and Systems Biology of Colorectal Cancer (SYSCOL) -- are being financed through the EU's Seventh Framework Programme, and will each receive EUR 12 million for five years. Both projects focus on cancer research and will take advantage of research facilities containing state of the art technology that are currently being established at the Center for Biosciences.

Systems Microscopy NoE will involve around 60 scientists from seven European universities and one company. The aim of the project is to create mathematical models of biological processes in time and space, in a close collaboration between scientists in biomedicine and mathematicians. The models can then be tested experimentally. The research methods that currently dominate the life sciences, such as genomics and proteomics, provide snapshots of the biological conditions prevalent at the precise moment of sampling. Biological processes are, however, the result of more than one such moment, and that is what the scientists will now be able to examine.

"The technology required is available, but it must be developed and, in particular, used. When we are trying to understand, for example, the process of metastasis, in which a cell must detach from the parent tumour and migrate away from it to establish new tumours, we need to visualize these events as a complete process," says Staffan Strömblad, Professor of Clinical Molecular Biology at Karolinska Institutet, and coordinator of Systems Microscopy.

SYSCOL will focus on colorectal cancer, one of the most common forms of cancer in both men and women, which is now increasing dramatically in many parts of the world. The challenge faced by the scientists is to identify genes that cause the formation of tumours and the regulatory elements that control the expression of these genes. This information will hopefully enable identification of those at particularly high risk of developing colorectal cancer. Scientists from nine European universities participate in the SYSCOL project, together with one American university, and a biotech company.

The project is coordinated by Professor Jussi Taipale, an expert in the molecular mechanisms that regulate the development of cancer. The scientists will use the latest technology for large-scale, genome-wide biological analyses and DNA sequencing. A high-technology unit for this type of analysis has recently opened at the Center for Biosciences. A central part of the project is based on collaboration with research groups in information technology, in order to make it possible to analyse the large quantities of data generated in new and advanced ways, based on systems biology.

Funding for the Center for Biosciences is provided by Stockholm County Council, even though the centre is placed within the Department of Biosciences and Nutrition at Karolinska Institutet. Research projects are carried out using research grants awarded from the EU, the Swedish Cancer Society, the Swedish Research Council and the Swedish Foundation for Strategic Research.

"We have collected a critical mass of scientists working on biological processes and the origin of cancer. Being awarded the responsibility for these two EU projects I regard as an acknowledgement of our quality. It also provides a unique opportunity for Karolinska Institutet to participate in forming new fields of research that will have major significance for cancer treatment in the future," says Rune Toftgård, Director of the Center for Biosciences.


Story Source:

The above post is reprinted from materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.


Journal Reference:

  1. John G. Lock, Staffan Strömblad. Systems microscopy: An emerging strategy for the life sciences. Experimental Cell Research, 2010; 316 (8): 1438 DOI: 10.1016/j.yexcr.2010.04.001

Cite This Page:

Karolinska Institutet. "Researching living cancer cells." ScienceDaily. ScienceDaily, 10 February 2011. <www.sciencedaily.com/releases/2011/02/110210094751.htm>.
Karolinska Institutet. (2011, February 10). Researching living cancer cells. ScienceDaily. Retrieved July 5, 2015 from www.sciencedaily.com/releases/2011/02/110210094751.htm
Karolinska Institutet. "Researching living cancer cells." ScienceDaily. www.sciencedaily.com/releases/2011/02/110210094751.htm (accessed July 5, 2015).

Share This Page: