Featured Research

from universities, journals, and other organizations

Scientists elevate warfighter readiness against invisible threats

Date:
February 17, 2011
Source:
Naval Research Laboratory
Summary:
In asymmetric warfare, early detection and identification of trace level chemical and biological agents and explosive compounds is critical to rapid reaction, response, and survivability.

A 100,000 times magnified view of the gold coated, silicon nanopillars that make up the arrays used in the SERS measurements. Each array consists of 250,000 nanopillars with up to 400 arrays per wafer.
Credit: Image courtesy of Naval Research Laboratory

In asymmetric warfare, early detection and identification of trace level chemical and biological agents and explosive compounds is critical to rapid reaction, response, and survivability. While there are many methods currently being used that can detect these threats, none allow for the unique fingerprinting of threat agents at trace levels.

A research team, led by Drs. Joshua Caldwell and Orest Glembocki, scientists at the U.S. Naval Research Laboratory, Electronic Science and Technology Division, has overcome this limitation with surface enhanced Raman scattering (SERS) using optically stimulated plasmon oscillations in nanostructured substrates.

Shown to provide enhancements of the Raman signal, large-area gold (Au) coated silicon (Si) nanopillar arrays are over 100 million times (108) more sensitive than Raman scattering sensing alone, while maintaining a very uniform response with less than 30 percent variability across the sensor area.

"These arrays are over an order-of-magnitude more sensitive than the best reported SERS sensors in the literature and the current state-of-the-art large-area commercial SERS sensors," said Caldwell. "These arrays can be a key component of fully integrated, autonomously operating chemical sensors that detect, identify and report the presence of a threat at trace levels of exposure."

Raman devices use laser light to excite molecular vibrations, which in turn causes a shift in the energy of the scattered laser photons, up or down, creating a unique visual pattern. In the case of trace amounts of molecules in gases or liquids, detection through ordinary Raman scattering is virtually impossible. However, the Raman signal can be enhanced via the SERS effect using metal nanoparticles.

Despite surface-enhanced Raman scattering being first observed in the late 1970s, efforts to provide reproducible SERS-based chemical sensors has been hindered by the inability to make large-area devices with a uniform SERS response. The ability to reproducibly pattern nanometer-sized particles in periodic arrays has finally allowed this requirement to be met.

"While many tools are currently available to detect trace amounts of chemical warfare and biological agents and explosive compounds, a device using SERS can be used to identify these minute quantities of the chemicals of interest by providing a 'fingerprint' of the material, which all but eliminates the prevalence of false alarms," says Glembocki.

SERS offers several potential advantages over other spectroscopic techniques because of its measurement speed, high sensitivity, portability, and simple maneuverability. SERS can additionally be used to enhance existing Raman technologies, such as the hand held and standoff units that are already in use in field applications.


Story Source:

The above story is based on materials provided by Naval Research Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Naval Research Laboratory. "Scientists elevate warfighter readiness against invisible threats." ScienceDaily. ScienceDaily, 17 February 2011. <www.sciencedaily.com/releases/2011/02/110210094915.htm>.
Naval Research Laboratory. (2011, February 17). Scientists elevate warfighter readiness against invisible threats. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/02/110210094915.htm
Naval Research Laboratory. "Scientists elevate warfighter readiness against invisible threats." ScienceDaily. www.sciencedaily.com/releases/2011/02/110210094915.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins