Featured Research

from universities, journals, and other organizations

Sleeping Trojan horse to aid imaging of diseased cells

Date:
February 18, 2011
Source:
Cardiff University
Summary:
A unique strategy developed by researchers in the UK is opening up new possibilities for improving medical imaging. Medical imaging often requires getting unnatural materials such as metal ions into cells, a process which is a major challenge across a range of biomedical disciplines. One technique currently used is called the 'Trojan Horse' in which the drug or imaging agent is attached to something naturally taken up by cells.

A unique strategy developed by researchers at Cardiff University is opening up new possibilities for improving medical imaging.

Medical imaging often requires getting unnatural materials such as metal ions into cells, a process which is a major challenge across a range of biomedical disciplines. One technique currently used is called the 'Trojan Horse' in which the drug or imaging agent is attached to something naturally taken up by cells.

The Cardiff team, made of researchers from the Schools of Chemistry and Biosciences, has taken the technique one step further with the development of a 'sleeping Trojan horse'. The first example of its kind, this is delivery system resolves some of the current difficulties involved in transporting metal ions into cells.

It is not itself taken up by cells so does not interfere with natural functions until it is 'woken' by the addition of the metal ions. This minimises the unwanted uptake and need for time-consuming purification associated with the common 'Trojan Horse' technique.

The research was led by Dr Mike Coogan, Senior Lecturer in Synthetic Chemistry, along with the paper's first author, Flora Thorp-Greenwood.

Dr Coogan said: "The sleeping Trojan horse process happens rapidly, and the vessel is capable of carrying metals which have positron-emitting isotopes, so it has potential for use in bimodal fluorescence and PET imaging. Combined agents for these types of imaging are known but rare, so this is a significant development in the field.

"There is also additional potential for use in radiotherapy as the metal-bearing form not only enters cells but also localises in the nucleolus. In principle, the concept could also be used to improve delivery of a huge range of drugs and imaging agents into cells or the body."

The study appears in the advanced article section of Chemical Communications, published by the Royal Society of Chemistry.


Story Source:

The above story is based on materials provided by Cardiff University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Flora L. Thorp-Greenwood, Vanesa Fernαndez-Moreira, Coralie O. Millet, Catrin F. Williams, Joanne Cable, Jonathan B. Court, Anthony J. Hayes, David Lloyd, Michael P. Coogan. A ‘Sleeping Trojan Horse’ which transports metal ions into cells, localises in nucleoli, and has potential for bimodal fluorescence/PET imaging. Chemical Communications, 2011; DOI: 10.1039/C1CC10141B

Cite This Page:

Cardiff University. "Sleeping Trojan horse to aid imaging of diseased cells." ScienceDaily. ScienceDaily, 18 February 2011. <www.sciencedaily.com/releases/2011/02/110217095827.htm>.
Cardiff University. (2011, February 18). Sleeping Trojan horse to aid imaging of diseased cells. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2011/02/110217095827.htm
Cardiff University. "Sleeping Trojan horse to aid imaging of diseased cells." ScienceDaily. www.sciencedaily.com/releases/2011/02/110217095827.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) — Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) — California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) — The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins