Featured Research

from universities, journals, and other organizations

Gas rich galaxies confirm prediction of modified gravity theory

Date:
February 25, 2011
Source:
University of Maryland
Summary:
Recent data for gas rich galaxies precisely match predictions of a modified theory of gravity know as MOND according to a new analysis.

The star dominated spiral galaxy UGC 2885.
Credit: Zagursky & McGaugh

Recent data for gas rich galaxies precisely match predictions of a modified theory of gravity known as MOND, according to a new analysis by University of Maryland Astronomy Professor Stacy McGaugh. This -- the latest of several successful MOND predictions -- raises new questions about accuracy of the reigning cosmological model of the universe, writes McGaugh in a paper to be published in March in Physical Review Letters.

Related Articles


Modern cosmology says that for the universe to behave as it does, the mass-energy of the universe must be dominated by dark matter and dark energy. However, direct evidence for the existence of these invisible components remains lacking. An alternate, though unpopular, possibility is that the current theory of gravity does not suffice to describe the dynamics of cosmic systems.

A few theories that would modify our understanding of gravity have been proposed. One of these is Modified Newtonian Dynamics (MOND), which was hypothesized in 1983 by Moti Milgrom a physicist at the Weizmann Institute of Science in Rehovot, Israel. One of MOND's predictions specifies the relative relationship between the mass of any galaxy and its flat rotation velocity. However, uncertainties in the estimates of masses of stars in star-dominated spiral galaxies (such as our own Milky Way) previously had precluded a definitive test.

To avoid this problem, McGaugh examined gas rich galaxies, which have relatively fewer stars and a preponderance of mass in the form of interstellar gas. "We understand the physics of the absorption and release of energy by atoms in the interstellar gas, such that counting photons is LIKE counting atoms. This gives us an accurate estimate of the mass of such galaxies," McGaugh said.

Using recently published work that he and other scientists had done to determine both the mass and flat rotation velocity of many gas rich galaxies, McGaugh compiled a sample of 47 of these and compared each galaxy's mass AND rotation velocity with the relationship expected by MOND. All 47 galaxies fell on or very close to the MOND prediction. No dark matter model performed as well.

"I find it remarkable that the prediction made by Milgrom over a quarter century ago performs so well in matching these findings for gas rich galaxies," McGaugh said. "

MOND vs. Dark Matter -- Dark Energy

Almost everyone agrees that on scales of large galaxy clusters and up, the Universe is well described by dark matter -- dark energy theory. However, according to McGaugh this cosmology does not account well for what happens at the scales of galaxies and smaller.

"MOND is just the opposite," he said. "It accounts well for the 'small' scale of individual galaxies, but MOND doesn't tell you much about the larger universe.

Of course, McGaugh said, one can start from the assumption of dark matter and adjust its models for smaller scales until it fits the current finding. "This is not as impressive as making a prediction ahead of [new findings], especially since we can't see dark matter. We can make any adjustment we need." This is rather like fitting planetary orbits with epicycles," he said. Epicycles were erroneously used by the ancient Greek scientist Ptolemy to explain observed planetary motions within the context of a theory for the universe that placed Earth in its center.

"If we're right about dark matter, why does MOND work at all?" asks McGaugh. "Ultimately, the correct theory -- be it dark matter or a modification of gravity -- needs to explain this."


Story Source:

The above story is based on materials provided by University of Maryland. Note: Materials may be edited for content and length.


Cite This Page:

University of Maryland. "Gas rich galaxies confirm prediction of modified gravity theory." ScienceDaily. ScienceDaily, 25 February 2011. <www.sciencedaily.com/releases/2011/02/110223092406.htm>.
University of Maryland. (2011, February 25). Gas rich galaxies confirm prediction of modified gravity theory. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/02/110223092406.htm
University of Maryland. "Gas rich galaxies confirm prediction of modified gravity theory." ScienceDaily. www.sciencedaily.com/releases/2011/02/110223092406.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Space & Time News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins