Featured Research

from universities, journals, and other organizations

Collisions of protein machines cause DNA replication derailment

Date:
February 28, 2011
Source:
Biotechnology and Biological Sciences Research Council
Summary:
Scientists have published results that will forever change the way researchers view the interplay between gene expression, DNA replication and the prevention of DNA damage.

A model of strands of DNA. DNA damage, if not kept in check, can lead to many problems including cancers. Researchers have shown that the process of replication is even riskier than originally thought.
Credit: iStockphoto/Martin McCarthy

Scientists have published results that will forever change the way researchers view the interplay between gene expression, DNA replication and the prevention of DNA damage.

DNA damage, if not kept in check, can lead to many problems including cancers. Researchers have shown that the process of replication is even riskier than originally thought.

Lead researcher Panos Soultanas, a Professor of Biological Chemistry from The University of Nottingham School of Chemistry said "Consider DNA as a bi-directional rail track with two types of train: a big fast one like an eight-carriage cross country train and a small slow one like a two-carriage regional train. As it travels, the big train - the DNA replisome - is responsible for copying the DNA e.g. when a cell is preparing to divide. And the small train - the RNA polymerase - makes its journey to deal with the expression of genes contained within the DNA sequence."

Just like trains, collisions between proteins moving along a strand of DNA can be catastrophic and this is one reason why areas of DNA that are being used a lot are particularly prone to damage. Until now it was thought that only head-on collisions between the DNA replisome (the big, fast, cross country train) and the RNA polymerase (the small, slow, regional train) could lead to serious DNA damage. This research shows that collisions between big and small trains running in the same direction can be just as dangerous and hence the problem in areas of high use is exacerbated.

This new information is published February 24 in the journal Nature.

Professor Soultanas said "Until now we thought that if the fast and slow protein-trains meet going in the same direction along the track then the faster DNA replication train just slows down and follows along behind the slower gene expression train until it has finished its job and moved out of the way. Our new research shows that this isn't the case at all and in fact they do collide quite often causing what, in this analogy, we could only describe as a major derailment!"

When the DNA replisome falls off the DNA there are other proteins - called "restart replication proteins" - that come in to help get it back on track. Although this ensures that DNA replication can continue, it can potentially increase the risk of mistakes occurring during the copying process, particularly if such restart replication proteins are malfunctioning. In some cases these mistakes can lead to problems e.g. if the mistake causes a genetic malfunction that can lead to a cancer developing.

Describing what happens to the DNA replisome in areas of DNA where there are many RNA Polymerases working on genes that are in high use, Professor Soultanas said: "We are now realizing that when there are a lot of slow moving trains close together on the track, the fast moving train is faced with a huge obstacle and any failure to safely negotiate these areas could easily result in significant errors. Therefore, replication restart mechanisms are of vital importance to ensure accurate copying of the genetic material."

Professor Douglas Kell, Chief Executive, BBSRC said "This is exciting news and an excellent achievement. Biological sciences as a discipline is unique because there are a collection of key ideas, tools, techniques and processes that are applied across an enormous range of topics. The interplay between gene expression, DNA replication and the prevention of DNA damage is an example of just such a tenet of biology and so this result has the potential to touch on research right across BBSRC's portfolio and beyond."

This research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Wellcome Trust.


Story Source:

The above story is based on materials provided by Biotechnology and Biological Sciences Research Council. Note: Materials may be edited for content and length.


Journal Reference:

  1. Houra Merrikh, Cristina Machσn, William H. Grainger, Alan D. Grossman, Panos Soultanas. Co-directional replication–transcription conflicts lead to replication restart. Nature, 2011; 470 (7335): 554 DOI: 10.1038/nature09758

Cite This Page:

Biotechnology and Biological Sciences Research Council. "Collisions of protein machines cause DNA replication derailment." ScienceDaily. ScienceDaily, 28 February 2011. <www.sciencedaily.com/releases/2011/02/110224103043.htm>.
Biotechnology and Biological Sciences Research Council. (2011, February 28). Collisions of protein machines cause DNA replication derailment. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2011/02/110224103043.htm
Biotechnology and Biological Sciences Research Council. "Collisions of protein machines cause DNA replication derailment." ScienceDaily. www.sciencedaily.com/releases/2011/02/110224103043.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) — CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) — Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Japan's Golden Generation Shows No Sign of Slowing Down

Japan's Golden Generation Shows No Sign of Slowing Down

AFP (Aug. 27, 2014) — For many people in the autumn of their lives, walking up stairs is the biggest physical challenge they face. But in Japan, race tracks, hammer or pole vault await competitors at the Kyoto Masters, some of them more than 100 years old. Duration: 02:32 Video provided by AFP
Powered by NewsLook.com
Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) — Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins