Featured Research

from universities, journals, and other organizations

Overfertilizing corn undermines ethanol: Researchers find feeding crops too heavily bad for biofuel, environment

Date:
March 21, 2011
Source:
Rice University
Summary:
Scientists have found that when growing corn crops for ethanol, more means less. A new paper shows how farmers can save money on fertilizer while they improve their production of feedstock for ethanol and alleviate damage to the environment.

Rice University scientists and their colleagues have found that when growing corn crops for ethanol, more means less.

A new paper in the February 25 online edition of the American Chemical Society's journal Environmental Science and Technology shows how farmers can save money on fertilizer while they improve their production of feedstock for ethanol and alleviate damage to the environment.

The research has implications for an industry that has grown dramatically in recent years to satisfy America's need for energy while trying to cut the nation's reliance on fossil fuels.

The team led by postdoctoral researcher Morgan Gallagher as part of her dissertation at Rice discovered that corn grain, one source of ethanol, and the stalks and leaves, the source of cellulosic ethanol, respond differently to nitrogen fertilization.

The researchers found that liberal use of nitrogen fertilizer to maximize grain yields from corn crops results in only marginally more usable cellulose from leaves and stems. And when the grain is used for food and the cellulose is processed for biofuel, pumping up the rate of nitrogen fertilization actually makes it more difficult to extract ethanol from corn leaves and stems.

This happens, they discovered, because surplus nitrogen fertilizer speeds up the biochemical pathway that produces lignin, a molecule that must be removed before cellulosic ethanol can be produced from corn stems and leaves.

The findings are an important next step in building a sustainable biofuel economy. Plants benefit from some nitrogen from fertilizer to produce the biomolecules they need to grow and function, said Carrie Masiello, an assistant professor of Earth science at Rice and Gallagher's adviser. But for many crops, a little is enough.

"We already know too much fertilizer is bad for the environment. Now we've shown that it's bad for biofuel crop quality too," Masiello said.

While farmers have a clear incentive to maximize grain yields, the research shows a path to even greater benefits when corn residues are harvested for cellulosic ethanol production, she said.

The study, conducted at and in collaboration with the National Science Foundation's W.K. Kellogg Biological Station at Michigan State University (MSU), showed that although feeding the plant more fertilizer increases the grain's cellulose content, grain yield quickly hits a plateau. "The kilograms of grain you get per hectare goes up pretty fast and peaks," Masiello said. At the same time, the researchers found only a modest increase in plant and stem cellulose, the basic component used to produce cellulosic ethanol.

"The implicit assumption has always been that the response of plant cellulose to fertilizer is going to be the same as the grain response, but we've showed this assumption may not always hold, at least for corn," Gallagher said.

Nitrogen fertilization encourages production of lignin within the plant, and without lignin, stalks won't stand. Lignin production comes at the expense of useful cellulose production. The researchers found that lignin yields from plant residue increased at nearly twice the rate as cellulose in response to nitrogen fertilization, and they said this implies "that residue feedstock quality declines as more nitrogen fertilizer is applied."

Lignin breaks down slowly via bacterial enzymes, and it is expensive to remove by chemical or mechanical processes that create a bottleneck in cellulosic ethanol production. "The ideal cellulosic ethanol crop has no lignin -- except you can't have a plant without it, because it would fall over. Plants need some lignin to maintain structure," said co-author Bill Hockaday, a former Rice postdoctoral researcher and now an assistant professor at Baylor University. "What we want is a low lignin-to-cellulose ratio."

Reducing fertilizer to the bare-bones minimum serves that purpose. "Morgan showed that if you look at kilograms of cellulose per hectare, yields don't increase at the same rate for the grain and the leaves and stems. There's really only a small amount of fertilizer needed if you're cropping strictly for cellulose," Masiello said.

Overfertilization also increases the decomposability of corn residue plowed back into the fields. This implies that soil carbon storage becomes less efficient -- another minus for the environment because storing additional carbon in soil can reduce the atmospheric concentration of carbon dioxide and help crops access soil water.

Issues associated with the runoff of nitrogen from fertilizer into streams and leaching into groundwater are common knowledge, Masiello said. She noted the well-established link between nitrogen fertilizer use in the Mississippi Valley and a "dead zone" -- defined as a lack of life-supporting oxygen -- in the Gulf of Mexico. Nitrate runoff and leaching into drinking water supplies has also been linked to a number of health problems, the researchers wrote.

Finally, Gallagher noted that improving the yield of feedstock for cellulosic ethanol leaves more corn for food. "There's a billion people who are malnourished, so it's ethically questionable to use corn grain for fuel rather than food," she said.

The researchers hope their methods can be transferred to other crops grown for ethanol. Gallagher, who recently earned her doctorate at Rice and is starting a joint postdoctoral stint between Masiello's lab and the NSF agricultural research station at Michigan State, plans to quantify the effects of nitrogen fertilization on switchgrass, which is growing in importance as a biofuel feedstock.

Co-authors of the paper include Sieglinde Snapp, an associate professor at MSU and a soils and cropping system ecologist at the W.K. Kellogg Biological Station; Claire McSwiney, a postdoctoral researcher at the Kellogg Biological Station; and Jeffrey Baldock, a researcher at Australia's Commonwealth Scientific and Industrial Research Organization.

The National Science Foundation and its Long-Term Ecological Research Program at the Kellogg Biological Station and MSU's AgBioResearch supported the research.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Morgan E. Gallagher, William C. Hockaday, Caroline A. Masiello, Sieglinde Snapp, Claire P. McSwiney, Jeffrey A. Baldock. Biochemical Suitability of Crop Residues for Cellulosic Ethanol: Disincentives to Nitrogen Fertilization in Corn Agriculture. Environmental Science & Technology, 2011; 45 (5): 2013 DOI: 10.1021/es103252s

Cite This Page:

Rice University. "Overfertilizing corn undermines ethanol: Researchers find feeding crops too heavily bad for biofuel, environment." ScienceDaily. ScienceDaily, 21 March 2011. <www.sciencedaily.com/releases/2011/02/110225164709.htm>.
Rice University. (2011, March 21). Overfertilizing corn undermines ethanol: Researchers find feeding crops too heavily bad for biofuel, environment. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2011/02/110225164709.htm
Rice University. "Overfertilizing corn undermines ethanol: Researchers find feeding crops too heavily bad for biofuel, environment." ScienceDaily. www.sciencedaily.com/releases/2011/02/110225164709.htm (accessed September 1, 2014).

Share This




More Plants & Animals News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins