Featured Research

from universities, journals, and other organizations

Scientists identify new implications for perennial bioenergy crops

Date:
March 1, 2011
Source:
Arizona State University
Summary:
Scientists have found that converting large swaths of land to bioenergy crops could have a wide range of effects on regional climate.

A team of researchers from Arizona State University, Stanford University and Carnegie Institution for Science has found that converting large swaths of land to bioenergy crops could have a wide range of effects on regional climate.

In an effort to help wean itself off fossil fuels, the U.S. has mandated significant increases in renewable fuels, with more than one-third of the domestic corn harvest to be used for conversion to ethanol by 2018. But concerns about effects of corn ethanol on food prices and deforestation had led to research suggesting that ethanol be derived from perennial crops, like the giant grasses Miscanthus and switchgrass. Nearly all of this research, though, has focused on the effects of ethanol on carbon dioxide emissions, which drive global warming.

"Almost all of the work performed to date has focused on the carbon effects," said Matei Georgescu, a climate modeler working in ASU's Center for Environmental Fluid Dynamics. "We've tried to expand our perspective to look at a more complete picture. What we've shown is that it's not all about greenhouse gases, and that modifying the landscape can be just as important."

Georgescu and his colleagues report their findings in the early online edition (Feb. 28, 2011) of the Proceedings of the National Academy of Sciences. Co-authors are David Lobell of Stanford University and Christopher Field of the Carnegie Institution for Science, both located in Stanford, Calif.

In their study, the researchers simulated an entire growing season with a state-of-the-art regional climate model. They ran two sets of experiments -- one with an annual crop representation over the central U.S. and one with an extended growing season to represent perennial grasses. In the model, the perennial plants pumped more water from the soil to the atmosphere, leading to large local cooling.

"We've shown that planting perennial bioenergy crops can lower surface temperatures by about a degree Celsius locally, averaged over the entire growing season. That's a pretty big effect, enough to dominate any effects of carbon savings on the regional climate," said Lobell.

The primary physical process at work is based on greater evapotranspiration (combination of evaporated water from the soil surface and plant canopy and transpired water from within the soil) for perennial crops compared to annual crops.

"More study is needed to understand the long-term implication for regional water balance," Georgescu said. "This study focused on temperature, but the more general point is that simply assessing the impacts on carbon and greenhouse gases overlooks important features that we cannot ignore if we want a bioenergy path that is sustainable over the long haul."


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matei Georgescu, David B. Lobell, and Christopher B. Field. Direct climate effects of perennial bioenergy crops in the United States. PNAS, February 28, 2011 DOI: 10.1073/pnas.1008779108

Cite This Page:

Arizona State University. "Scientists identify new implications for perennial bioenergy crops." ScienceDaily. ScienceDaily, 1 March 2011. <www.sciencedaily.com/releases/2011/02/110228151744.htm>.
Arizona State University. (2011, March 1). Scientists identify new implications for perennial bioenergy crops. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/02/110228151744.htm
Arizona State University. "Scientists identify new implications for perennial bioenergy crops." ScienceDaily. www.sciencedaily.com/releases/2011/02/110228151744.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins