Featured Research

from universities, journals, and other organizations

Study of 90 animals' thigh bones reveals how they can efficiently carry loads

Date:
March 14, 2011
Source:
Imperial College London
Summary:
The structures inside animals' thigh bones that enable them to support huge loads whilst being relatively lightweight are revealed in a new study. The researchers say their work could lead to the development of new materials based on thigh bone geometry.

The structures inside animals' thigh bones that enable them to support huge loads whilst being relatively lightweight are revealed in research published in the journal Proceedings of the Royal Society B. The researchers say their work could lead to the development of new materials based on thigh bone geometry.

A team from Imperial College London and the Royal Veterinary College collected thigh bone samples from British museum collections and zoos, analysing specimens of the femur bone from 90 different species including the Asian elephant, Etruscan shrew, roadrunner, crocodile, emu, turkey, leopard and giraffe. They explored how animal size related to the formation of an interlinking lattice of tiny bone struts inside the femur called trabeculae. The researchers found that trabeculae, typically found near joints, have different geometry depending on the size of the species.

The researchers say their new understanding of how femur bones are structured could be used to advance a class of tough, light-weight structural materials, which could be used to improve bodywork for planes and cars.

Dr Michael Doube, lead author of the study from the Department of Bioengineering at Imperial College London, who is also a veterinary surgeon, says:

"Scientists had not previously known that the structure of trabeculae varied, or scaled up, depending on the size of the animal. We assumed that trabeculae would be important in supporting the weight of larger creatures such as Asian elephants, which can weigh more than three tonnes. However, we were surprised to find that animals that have comparatively lighter loads, such as the Etruscan shrew, weighing three grams, also has trabeculae supporting its tiny body. Our study is helping us to see how the remarkable geometry of trabeculae supports loads in all creatures, no matter how big or small they are."

The scientists found that even though the overall amount of bone per unit volume stayed roughly the same in bigger animals and smaller animals, the trabeculae in bigger animals were thicker, further apart and less numerous.

The team suggest that the big trabecular struts inside the bones of larger animals help to support their heavier load without the need for thicker and denser bones. Using this structure saves valuable energy in larger animals because they do not have to grow, maintain and carry extra bone tissue around with them.

The scientists say new structural materials could be developed, which are inspired by geometry inside femurs. These materials would contain a lattice work of stiff foam that would be reinforced in certain areas, depending on the load being exerted on that particular section. This type of material could be used in car bodywork, only being reinforced in areas of the car where loads are heaviest. This could make cars lighter and more fuel efficient.

The team in the study used a technique called X-ray microtomography, which uses X-rays to create three dimensional images of the trabecular bone. This information was fed into a computer where the scientists created over 200 virtual computer models of the bones.

To analyse the bone structure of the 3-D femora models, the researchers also developed an open source computer program called BoneJ that examined different aspects of the trabeculae including the number of struts, their thickness and spacing. BoneJ has been downloaded more than 1500 times world-wide, with hits from over 250 institutes and organisations.

This research is part of ongoing work by the team who are also investigating how leg bones affect the gait and walking characteristics in different species. The information combined from both studies will be used by the team to understand the relationship between how animals walk and bone structure. This could lead to insights into a range of fields including understanding in more detail how bone deformities develop in animals and humans and deducing the movement patterns of ancient species in the field of palaeontology.

This research was funded by the Biotechnology and Biological Sciences Research Council.


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Doube, M. M. Klosowski, A. M. Wiktorowicz-Conroy, J. R. Hutchinson, S. J. Shefelbine. Trabecular bone scales allometrically in mammals and birds. Proceedings of the Royal Society B: Biological Sciences, 2011; DOI: 10.1098/rspb.2011.0069

Cite This Page:

Imperial College London. "Study of 90 animals' thigh bones reveals how they can efficiently carry loads." ScienceDaily. ScienceDaily, 14 March 2011. <www.sciencedaily.com/releases/2011/03/110308191047.htm>.
Imperial College London. (2011, March 14). Study of 90 animals' thigh bones reveals how they can efficiently carry loads. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2011/03/110308191047.htm
Imperial College London. "Study of 90 animals' thigh bones reveals how they can efficiently carry loads." ScienceDaily. www.sciencedaily.com/releases/2011/03/110308191047.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) — You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
Get A Mortgage, Receive A Cat — Only In Russia

Get A Mortgage, Receive A Cat — Only In Russia

Newsy (Sep. 2, 2014) — The incentive is in keeping with a Russian superstition that it's good luck for a cat to be the first to cross the threshold of a new home. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins