Featured Research

from universities, journals, and other organizations

New blood analysis chip could lead to disease diagnosis in minutes

Date:
March 18, 2011
Source:
University of California - Berkeley
Summary:
A major milestone in microfluidics could soon lead to stand-alone, self-powered chips that can diagnose diseases within minutes. The device is able to process whole blood samples without the use of external tubing or external components.

Photograph of the stand alone 1x2 inch SIMBAS chip simultaneously processing five separate whole-blood samples by separating the plasma from the blood cells and detecting the presence of biotin, or vitamin B7.
Credit: Ivan Dimov

A major milestone in microfluidics could soon lead to stand-alone, self-powered chips that can diagnose diseases within minutes. The device, developed by an international team of researchers from the University of California, Berkeley, Dublin City University in Ireland and Universidad de Valparaíso Chile, is able to process whole blood samples without the use of external tubing and extra components.

The researchers have dubbed the device SIMBAS, which stands for Self-powered Integrated Microfluidic Blood Analysis System. SIMBAS appeared as the cover story March 7 in the peer-reviewed journal Lab on a Chip.

"The dream of a true lab-on-a-chip has been around for a while, but most systems developed thus far have not been truly autonomous," said Ivan Dimov, UC Berkeley post-doctoral researcher in bioengineering and co-lead author of the study. "By the time you add tubing and sample prep setup components required to make previous chips function, they lose their characteristic of being small, portable and cheap. In our device, there are no external connections or tubing required, so this can truly become a point-of-care system."

Dimov works in the lab of the study's principal investigator, Luke Lee, UC Berkeley professor of bioengineering and co-director of the Berkeley Sensor and Actuator Center.

"This is a very important development for global healthcare diagnostics," said Lee. "Field workers would be able to use this device to detect diseases such as HIV or tuberculosis in a matter of minutes. The fact that we reduced the complexity of the biochip and used plastic components makes it much easier to manufacture in high volume at low cost. Our goal is to address global health care needs with diagnostic devices that are functional, cheap and truly portable."

For the new SIMBAS biochip, the researchers took advantage of the laws of microscale physics to speed up processes that may take hours or days in a traditional lab. They note, for example, that the sediment in red wine that usually takes days to years to settle can occur in mere seconds on the microscale.

The SIMBAS biochip uses trenches patterned underneath microfluidic channels that are about the width of a human hair. When whole blood is dropped onto the chip's inlets, the relatively heavy red and white blood cells settle down into the trenches, separating from the clear blood plasma. The blood moves through the chip in a process called degas-driven flow.

For degas-driven flow, air molecules inside the porous polymeric device are removed by placing the device in a vacuum-sealed package. When the seal is broken, the device is brought to atmospheric conditions, and air molecules are reabsorbed into the device material. This generates a pressure difference, which drives the blood fluid flow in the chip.

In experiments, the researchers were able to capture more than 99 percent of the blood cells in the trenches and selectively separate plasma using this method.

"This prep work of separating the blood components for analysis is done with gravity, so samples are naturally absorbed and propelled into the chip without the need for external power," said Dimov.

The team demonstrated the proof-of-concept of SIMBAS by placing into the chip's inlet a 5-microliter sample of whole blood that contained biotin (vitamin B7) at a concentration of about 1 part per 40 billion.

"That can be roughly thought of as finding a fine grain of sand in a 1700-gallon sand pile," said Dimov.

The biodetectors in the SIMBAS chip provided a readout of the biotin levels in 10 minutes.

"Imagine if you had something as cheap and as easy to use as a pregnancy test, but that could quickly diagnose HIV and TB," said Benjamin Ross, a UC Berkeley graduate student in bioengineering and study co-author. "That would be a real game-changer. It could save millions of lives."

"The SIMBAS platform may create an effective molecular diagnostic biochip platform for cancer, cardiac disease, sepsis and other diseases in developed countries as well," said Lee.

Other co-lead authors of the study are Lourdes Basabe-Desmonts, senior scientist at Dublin City University's Biomedical Diagnostics Institute, and Jose L. Garcia-Cordero, currently post-doctoral scientist at École Polytechnique Fédérale de Lausanne (EPFL Switzerland). Antonio J. Ricco, adjunct professor at the Biomedical Diagnostics Institute at Dublin City University, also co-authored the study.

The work was funded by the Science Foundation Ireland and the U.S. National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - Berkeley. The original article was written by Sarah Yang. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ivan K. Dimov, Lourdes Basabe-Desmonts, Jose L. Garcia-Cordero, Benjamin M. Ross, Antonio J. Ricco, Luke P. Lee. Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab on a Chip, 2011; 11 (5): 845 DOI: 10.1039/C0LC00403K

Cite This Page:

University of California - Berkeley. "New blood analysis chip could lead to disease diagnosis in minutes." ScienceDaily. ScienceDaily, 18 March 2011. <www.sciencedaily.com/releases/2011/03/110318102243.htm>.
University of California - Berkeley. (2011, March 18). New blood analysis chip could lead to disease diagnosis in minutes. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2011/03/110318102243.htm
University of California - Berkeley. "New blood analysis chip could lead to disease diagnosis in minutes." ScienceDaily. www.sciencedaily.com/releases/2011/03/110318102243.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins