Featured Research

from universities, journals, and other organizations

Major clue in long-term memory-making

Date:
March 21, 2011
Source:
Duke University Medical Center
Summary:
You may remember the color of your loved one's eyes for years. But how? Scientists believe that long-term potentiation (LTP) -- the long-lasting increase of signals across a connection between brain cells -- underlies our ability to remember over time and to learn, but how that happens is a central question in neuroscience.

Image shows the formation of dendritic spines during long-term potentiation in a single synapse. Signaling activity is color coded (red = high activity of Cdc42, blue = low activity). Activity is high only in the growing spine, and this shows Cdc42 helps to strengthen a synapse for long-term memory storage.
Credit: Ryohei Yasuda, Duke University Medical Center

You may remember the color of your loved one's eyes for years. But how? Scientists believe that long-term potentiation (LTP) -- the long-lasting increase of signals across a connection between brain cells -- underlies our ability to remember over time and to learn, but how that happens is a central question in neuroscience.

Researchers at Duke University Medical Center have found a cascade of signaling molecules that allows a usually very brief signal to last for tens of minutes, providing the brain framework for stronger connections (synapses) that can summon a memory for a period of months or even years.

Their findings about how the synapses change the strength of connections could have a bearing on Alzheimer's disease, autism and mental retardation, said Ryohei Yasuda, Ph.D., assistant professor of neurobiology and senior author.

"We found that a biochemical process that lasts a long time is what causes memory storage," said Yasuda, who is a Howard Hughes Medical Institute Early Career Scientist.

This work was published in the March 20 issue of Nature.

The researchers were investigating the signaling molecules that regulate the actin cytoskeleton, which serves as the structural framework of synapses.

"The signaling molecules could help to rearrange the framework, and give more volume and strength to the synapses," Yasuda said. "We reasoned that a long-lasting memory could possibly come from changes in the building block assemblies."

The Duke researchers knew that long-term potentiation, a long-lasting set of electrical impulses in nerve cells, is triggered by a transient increase of calcium (Ca2+) ions in a synapse. They devised experiments to learn exactly how the short Ca2+ signal, which lasts only for ~0.1s, is translated into long-lasting (more than an hour) change in synaptic transmission.

The team used a 2-photon microscopy technique to visualize molecular signaling within single synapses undergoing LTP, a method developed in the Yasuda lab. This microscopy method allowed the team to monitor molecular activity in single synapses while measuring the synapses for increase in their volume and strength of the connections.

They found that signaling molecules Rho and Cdc42, regulators of the actin cytoskeleton, are activated by CaMKII, and relay a CaMKII signal into signals lasting many minutes. These long-lasting signals are important for maintaining long-lasting plasticity of synapses, the ability of the brain to change during learning or memorization.

Many mental diseases such as mental retardation and Alzheimer's disease are associated with abnormal Rho and Cdc42 signals, Yasuda said. "Thus, our finding will provide many insights into these diseases."

Other authors include lead author Hideji Murakoshi and Hong Wang of the Duke Department of Neurobiology.

This study was funded by Howard Hughes Medical Institute, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institute of Drug Abuse, the Alzheimer's Association and the Japan Society for the Promotion of Science.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hideji Murakoshi, Hong Wang, Ryohei Yasuda. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature, 2011; DOI: 10.1038/nature09823

Cite This Page:

Duke University Medical Center. "Major clue in long-term memory-making." ScienceDaily. ScienceDaily, 21 March 2011. <www.sciencedaily.com/releases/2011/03/110320164231.htm>.
Duke University Medical Center. (2011, March 21). Major clue in long-term memory-making. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/03/110320164231.htm
Duke University Medical Center. "Major clue in long-term memory-making." ScienceDaily. www.sciencedaily.com/releases/2011/03/110320164231.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins