Featured Research

from universities, journals, and other organizations

Primordial soup gets spicier: 'Lost' samples from famous origin of life researcher shed new light on Earth's first life

Date:
March 21, 2011
Source:
University of California - San Diego
Summary:
Stanley Miller gained fame with his 1953 experiment showing the synthesis of organic compounds thought to be important in setting the origin of life in motion. Five years later, he produced samples from a similar experiment, shelved them and, as far as friends and colleagues know, never returned to them in his lifetime. More 50 years later, Jeffrey Bada, Miller's former student and now a professor of marine chemistry, discovered the samples in Miller's laboratory material and made a discovery that represents a potential breakthrough in the search for the processes that created Earth's first life forms.

Scripps Oceanography professor of Marine Chemistry Jeffrey Bada holds a preserved sample from a 1958 experiment done by "primordial soup" pioneer Stanley Miller. The residue in the sample contains amino acids created by the experiment. The samples had not undergone analysis until recently when Bada and colleagues discovered a wide range of amino acids using modern detection methods.
Credit: Scripps Institution of Oceanography, UC San Diego

Stanley Miller gained fame with his 1953 experiment showing the synthesis of organic compounds thought to be important in setting the origin of life in motion. Five years later, he produced samples from a similar experiment, shelved them and, as far as friends and colleagues know, never returned to them in his lifetime.

Related Articles


More 50 years later, Jeffrey Bada, Miller's former student and a current Scripps Institution of Oceanography, UC San Diego professor of marine chemistry, discovered the samples in Miller's laboratory material and made a discovery that represents a potential breakthrough in the search for the processes that created Earth's first life forms.

Former Scripps undergraduate student Eric Parker, Bada and colleagues report on their reanalysis of the samples in the March 21 issue of Proceedings of the National Academy of Sciences. Miller's 1958 experiment in which the gas hydrogen sulfide was added to a mix of gases believed to be present in the atmosphere of early Earth resulted in the synthesis of sulfur amino acids as well as other amino acids. The analysis by Bada's lab using techniques not available to Miller suggests that a diversity of organic compounds existed on early planet Earth to an extent scientists had not previously realized.

"Much to our surprise the yield of amino acids is a lot richer than any experiment (Miller) had ever conducted," said Bada.

The new findings support the case that volcanoes -- a major source of atmospheric hydrogen sulfide today -- accompanied by lightning converted simple gases into a wide array of amino acids, which are were in turn available for assembly into early proteins.

Bada also found that the amino acids produced in Miller's experiment with hydrogen sulfide are similar to those found in meteorites. This supports a widely-held hypothesis that processes such as the ones in the laboratory experiments provide a model of how organic material needed for the origin of life are likely widespread in the universe and thus may provide the extraterrestrial seeds of life elsewhere.

Successful creation of the sulfur-rich amino acids would take place in the labs of several researchers, including Miller himself, but not until the 1970s.

"Unbeknownst to him, he'd already done it in 1958," said Bada.

Miller's initial experiments in the 1950s with colleague Harold Urey used a mixture of gases such as methane, ammonia, water vapor and hydrogen and electrically charged them as lightning would. The experiment, which took place in a closed chamber meant to simulate conditions on early Earth, generated several simple amino acids and other organic compounds in what became known as "primordial soup."

With the gases and electrical energy they produce, many geoscientists believe the volcanoes on a young planet covered much more extensively by water than today's served as oases of raw materials that allowed prebiotic matter to accumulate in sufficient quantities to assemble into more complex material and eventually into primitive life itself. Bada had already begun reanalyzing Miller's preserved samples and drawing conclusions about the role of volcanoes in sparking early life when he came across the previously unknown samples. In a 2008 analysis of samples left from Miller's more famous experiment, Bada's team had been able to detect many more amino acids than his former mentor had thanks to modern techniques unavailable to Miller.

Miller, who became a chemistry professor at UCSD in 1960, conducted the experiments while a faculty member at Columbia University. He had collected and catalogued samples from the hydrogen sulfide mix but never analyzed them. He only casually mentioned their existence late in his life and the importance of the samples was only realized shortly before his death in 2007, Bada said. It turned out, however, that his 1958 mix more closely resembled what geoscientists now consider early Earth conditions than did the gases in his more famous previous experiment.

"This really not only enhances our 2008 study but goes further to show the diversity of compounds that can be produced with a certain gas mixture," Bada said.

The Bada lab is gearing up to repeat Miller's classic experiments later this year. With modern equipment including a miniaturized microwave spark apparatus, experiments that took the elder researcher weeks to carry out could be completed in a day, Bada said.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Primordial soup gets spicier: 'Lost' samples from famous origin of life researcher shed new light on Earth's first life." ScienceDaily. ScienceDaily, 21 March 2011. <www.sciencedaily.com/releases/2011/03/110321161904.htm>.
University of California - San Diego. (2011, March 21). Primordial soup gets spicier: 'Lost' samples from famous origin of life researcher shed new light on Earth's first life. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/03/110321161904.htm
University of California - San Diego. "Primordial soup gets spicier: 'Lost' samples from famous origin of life researcher shed new light on Earth's first life." ScienceDaily. www.sciencedaily.com/releases/2011/03/110321161904.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ruins Thought To Be Port Actually Buried Greek City

Ruins Thought To Be Port Actually Buried Greek City

Newsy (Nov. 24, 2014) Media is calling it an "underwater Pompeii." Researchers have found ruins off the coast of Delos. Video provided by Newsy
Powered by NewsLook.com
Amphipolis Tomb Architraves Reveal Faces

Amphipolis Tomb Architraves Reveal Faces

AFP (Nov. 22, 2014) Faces in an area of mosaics is the latest find by archaeologists at a recently discovered tomb dating back to fourth century BC and the time of Alexander the Great in Greece. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins