Featured Research

from universities, journals, and other organizations

Observation of rare particles may shed light on why the universe has more matter than antimatter

Date:
June 19, 2011
Source:
Syracuse University
Summary:
Physicists have now observed the decays of a rare particle that was present right after the Big Bang. Scientists hope this will help to solve the mystery of why the universe evolved with more matter than antimatter.

Shortly after experiments on the Large Hadron Collider (LHC) at the CERN laboratory near Geneva, Switzerland began yielding scientific data last fall, a group of scientists led by a Syracuse University physicist became the first to observe the decays of a rare particle that was present right after the Big Bang. By studying this particle, scientists hope to solve the mystery of why the universe evolved with more matter than antimatter.

Led by Sheldon Stone, a physicist in SU's College of Arts and Sciences, the scientists observed the decay of a special type of B meson, which are created when protons traveling at nearly the speed of light smash into each other. The work is part of two studies published in the March 28 issue of Physics Letters B. Stone leads SU's high-energy physics group, which is part of a larger group of scientists (the LHCb collaboration) that run an experiment at CERN. The National Science Foundation (NSF) funds Stone's research group.

Scientists are eager to study these special B mesons because of their potential for yielding information about the relationship between matter and antimatter moments after the Big Bang, as well as yet-to-be described forces that resulted in the rise of matter over antimatter.

"We know when the universe formed from the Big Bang, it had just as much matter as antimatter," Stone says. "But we live in a world predominantly made of matter, therefore, there had to be differences in the decaying of both matter and antimatter in order to end up with a surplus of matter."

All matter is composed of atoms, which are composed of protons (positive charge), electrons (negative charge) and neutrons (neutral). The protons and neutrons are composed, in turn, of even smaller particles called quarks. Antimatter is composed of antiprotons, positrons (the opposite of electrons), antineutrons, and thus anti-quarks. While antimatter generally refers to sub-atomic particles, it can also include larger elements, such as hydrogen or helium. It is generally believed that the same rules of physics should apply to both matter and antimatter and that both should occur in equal amounts in the universe. That they don't play by the same rules or occur in equal amounts are among the greatest unsolved problems in physics today.

B mesons are a rare and special subgroup of mesons composed of a quark and anti-quark. While B mesons were common after the Big Bang, they are not believed to occur in nature today and can only be created and observed under experimental conditions in the LHC or other high-energy colliders. Because these particles don't play by the same rules of physics as most other matter, scientists believe B mesons may have played an important role in the rise of matter over antimatter. The particles may also provide clues about the nature of the forces that led to this lack of symmetry in the universe.

"We want to figure out the nature of the forces that influence the decay of these [B meson] particles," Stone says. "These forces exist, but we just don't know what they are. It could help explain why antimatter decays differently than matter."

In 2009, SU's experimental high-energy physics group received more than $3.5 million from the NSF through the American Recovery and Reinvestment Act (ARRA) for its research as part of the LHCb collaboration at CERN. The LHCb, one of four large particle detectors located in the LHC ring, is dedicated to searching for new types of fundamental forces in nature.


Story Source:

The above story is based on materials provided by Syracuse University. Note: Materials may be edited for content and length.


Journal References:

  1. V. Khachatryan, A.M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth et al. Search for a heavy gauge boson W′ in the final state with an electron and large missing transverse energy in pp collisions at sqrt(s)=7 TeV. Physics Letters B, 2011; 698 (1): 21 DOI: 10.1016/j.physletb.2011.02.048
  2. S. Chatrchyancj, V. Khachatryancj, A.M. Sirunyancj, A. Tumasyancj, W. Adamck, T. Bergauerck, M. Dragicevicck, J. Eröck, C. Fabjanck, M. Friedlck, R. Frühwirth et al. Measurement of W W production and search for the higgs boson in pp collisions at sqrt(s)=7 TeV. Physics Letters B, 25 March 2011 DOI: 10.1016/j.physletb.2011.03.056

Cite This Page:

Syracuse University. "Observation of rare particles may shed light on why the universe has more matter than antimatter." ScienceDaily. ScienceDaily, 19 June 2011. <www.sciencedaily.com/releases/2011/03/110328101306.htm>.
Syracuse University. (2011, June 19). Observation of rare particles may shed light on why the universe has more matter than antimatter. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2011/03/110328101306.htm
Syracuse University. "Observation of rare particles may shed light on why the universe has more matter than antimatter." ScienceDaily. www.sciencedaily.com/releases/2011/03/110328101306.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Patents Contact Lens Cameras; Internet Is Wary

Google Patents Contact Lens Cameras; Internet Is Wary

Newsy (Apr. 15, 2014) — Google has filed for a patent to develop contact lenses capable of taking photos. The company describes possible benefits to blind people. Video provided by Newsy
Powered by NewsLook.com
The Walking, Talking Oil-Drigging Rig

The Walking, Talking Oil-Drigging Rig

Reuters - Business Video Online (Apr. 15, 2014) — Pennsylvania-based Schramm is incorporating modern technology in its next generation oil-drigging rigs, making them smaller, safer and smarter. Ernest Scheyder reports. Video provided by Reuters
Powered by NewsLook.com
Dutch Highway Introduces Glow-In-The-Dark Paint

Dutch Highway Introduces Glow-In-The-Dark Paint

Newsy (Apr. 14, 2014) — A Dutch highway has become the first lit by glow-in-the-dark paint — a project aimed at reducing street light use. Video provided by Newsy
Powered by NewsLook.com
Google Buys Drone Maker, Hopes to Connect Rural World

Google Buys Drone Maker, Hopes to Connect Rural World

Newsy (Apr. 14, 2014) — Formerly courted by Facebook, Titan Aerospace will become a part of Google's quest to blanket the world in Internet connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins