Featured Research

from universities, journals, and other organizations

New models may reduce seabird bycatch

Date:
May 9, 2011
Source:
Duke University
Summary:
Tens of thousands of albatrosses and other far-ranging seabirds are killed each year after they become caught in longline fishing gear. Innovative new models may help reduce these casualties by more precisely projecting where and when birds and boats are likely to cross paths.

Tens of thousands of albatrosses and other far-ranging seabirds are killed each year after they become caught in longline fishing gear. Innovative new models developed by a Duke University-led research team may help reduce these casualties by more precisely projecting where and when birds and boats are likely to cross paths.

The models use remotely sensed physical and biological data to predict changing conditions -- such as sea surface temperatures or the availability of phytoplankton -- that make different parts of the ocean suitable habitats for foraging, nesting and other seabird behaviors at different times of the year, or from year to year.

Conservationists and fisheries managers can overlay maps of predicted habitat suitability onto maps of longline fishing activity and telemetry-tracked bird migrations to better avoid bird bycatch.

Old bycatch models don't account for these dynamic factors; they rely almost exclusively on static overlays based on historic fishery and bird-tracking data.

The Duke-led team tested the new models in case studies of two species of pelagic seabirds, the Laysan albatross and the black-footed albatross, whose long-distance migrations intersect areas of heavy swordfish and tuna fishing activity in Hawaiian fisheries. The studies used historic bycatch and tracking data from 1997 to 2000. Results were published March 23 online in the British peer-reviewed journal Proceedings of the Royal Society B.

The models' predictions corresponded closely to actual historic bycatch observations, says lead researcher Ramunas Zydelis, a postdoctoral research associate at Duke's Center for Marine Conservation. Black-footed albatrosses were more frequently caught in 1997-2000 despite being 10 times less abundant than Laysan albatrosses, probably because their habitat overlapped more with fisheries, according to the model's predictions.

Zydelis says the findings demonstrate that the new models "may be especially useful in cases where seabird tracking data do not fully represent the population" or reflect the full extent of its current or potential geographic range.

For instance, the models predicted suitable habitats for Laysan albatrosses along the California Current in the eastern Pacific, despite the fact that none of the birds tracked in the study traveled there, he says. Conservationists who relied on old, static models wouldn't have been forewarned about possible bycatch interactions in that region, even though Laysan albatrosses are known to forage in the current's rich waters.

The models also predicted suitable habitats for black-footed albatrosses from July to October in the Sea of Okhotsk in the northwest Pacific, though no recent tracking data suggests the species' distribution extends that far.

One possible explanation, says co-author Larry B. Crowder of Duke, may be that huge numbers of black-footed albatrosses were hunted and killed for their feathers in that region during the 19th and early 20th centuries, effectively wiping out the modern population, even though archeological evidence suggests the birds were widespread there in pre-modern times.

"Whether the models have correctly identified potential or recent black-footed albatross range is unknown," says Crowder, director of the Center for Marine Conservation and Stephen Toth Professor of Marine Biology at Duke's Nicholas School of the Environment. "Nevertheless, it underscores the potential for dynamic models to provide new information on animal distribution."

The study was funded by the Gordon and Betty Moore Foundation as part of Project GloBAL, a global bycatch assessment of long-lived species that is a joint venture of Duke University and the Blue Ocean Institute.

Other co-authors were Jeffrey E. Moore, Andre M. Boustany, Jason J. Roberts, Michelle Sims, Daniel C. Dunn, Benjamin D. Best and Patrick N. Halpin, of Duke University; Rebecca L. Lewison of San Diego State University; Yann Tremblay, Michelle A. Kappes and Daniel P. Costa of the University of California at Santa Cruz (UC-SC); and Scott A. Shaffer of UC-SC and San Jose State University.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Zydelis, R. L. Lewison, S. A. Shaffer, J. E. Moore, A. M. Boustany, J. J. Roberts, M. Sims, D. C. Dunn, B. D. Best, Y. Tremblay, M. A. Kappes, P. N. Halpin, D. P. Costa, L. B. Crowder. Dynamic habitat models: using telemetry data to project fisheries bycatch. Proceedings of the Royal Society B: Biological Sciences, 2011; DOI: 10.1098/rspb.2011.0330

Cite This Page:

Duke University. "New models may reduce seabird bycatch." ScienceDaily. ScienceDaily, 9 May 2011. <www.sciencedaily.com/releases/2011/04/110404161825.htm>.
Duke University. (2011, May 9). New models may reduce seabird bycatch. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/04/110404161825.htm
Duke University. "New models may reduce seabird bycatch." ScienceDaily. www.sciencedaily.com/releases/2011/04/110404161825.htm (accessed August 21, 2014).

Share This




More Earth & Climate News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

California Drought Stings Honeybees, Beekeepers

California Drought Stings Honeybees, Beekeepers

AP (Aug. 21, 2014) — California's record drought is hurting honey supplies and raising prices for consumers. The lack of rainfall means fewer crops and wildflowers that provide the nectar bees need to make honey. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Thousands Of Species Found In Lake Under Antarctic Ice

Thousands Of Species Found In Lake Under Antarctic Ice

Newsy (Aug. 20, 2014) — A U.S. team found nearly 4,000 species in a subglacial lake that hasn't seen sunlight in millennia, showing life can thrive even under the ice. Video provided by Newsy
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins