Featured Research

from universities, journals, and other organizations

The 'molecular octopus': A little brother of 'Schroedinger’s cat'

Date:
April 6, 2011
Source:
University of Vienna
Summary:
For the first time, the quantum behavior of molecules consisting of more than 400 atoms was demonstrated by scientists. The research also sheds new light on an important aspect of the famous thought experiment known as "Schroedinger's cat".

Artistic view of the most complex and massive molecules (PFNS-10, TPP-152) brought to quantum interference.
Credit: Illustration by Mathias Tomandl

For the first time, the quantum behaviour of molecules consisting of more than 400 atoms was demonstrated by quantum physicists based at the University of Vienna in collaboration with chemists from Basel and Delaware. The international and interdisciplinary team of scientists has set a new record in the verification of the quantum properties of nanoparticles.

In addition, an important aspect of the famous thought experiment known as 'Schroedinger's cat' is probed. However, due to the particular shape of the chosen molecules the reported experiment could be more fittingly called 'molecular octopus'.

The researchers report their findings in Nature Communications.

'Schroedinger's cat': simultaneously dead and alive?

Since the beginning of the 20th century, quantum mechanics has been a pillar of modern physics. Still, some of its predictions seem to disagree with our common sense and the observations in our everyday life. This contradiction was brought to the fore 80 years ago by the Austrian physicist Erwin Schroedinger; he wondered whether it was possible to realize states of extreme superposition such as, for example, that of a cat which is simultaneously dead and alive. This experiment has not been realized with actual cats for good reasons. Nevertheless, the successful experiments by Gerlich et al. show that it is possible to reproduce important aspects of this thought experiment with large organic molecules.

'Superposition' demonstrated for larger and larger molecules

In quantum physics, the propagation of massive particles is described by means of matter waves. In a certain sense, this means that the particles loose their classical property of a well-defined position and their quantum wave function can extend simultaneously over a large area. Formally, this state resembles that of a cat that is at the same time dead and alive. In quantum physics this is called a 'superposition'. Markus Arndt and his team at the University of Vienna tackle the question, up to which degree of complexity the amazing laws of quantum physics still apply. To this end, they investigate the quantum behaviour of molecules of increasing size, in particular their superposition at various positions in an interferometer. The high instability of most organic complexes, however, poses a major challenge in the process.

Tailor-made molecules solve the problem of instability

Many molecules break apart during the preparation of the thermal particle beam. Therefore, a close collaboration with chemists from Switzerland and the United States was crucial for the success of the recent experiments. The team of Marcel Mayor at the University of Basel and Paul J. Fagan from Central Research and Development of DuPont in Wilmington, DE, accomplished the synthesis of massive molecule complexes, which can survive the critical evaporation process.

A new record

The use of specifically synthesized organic molecules consisting of complexes of up to 430 atoms enabled the researchers to demonstrate the quantum wave nature in mass and size regimes that hitherto had been experimentally inaccessible. These particles are comparable in size, mass and complexity to Insulin molecules and exhibit many features of classical objects. Nevertheless, in the current experiment the tailor-made molecules can exist in a superposition of clearly distinguishable positions and therefore -- similar to 'Schroedinger's cat' -- in a state that is excluded in classical physics.


Story Source:

The above story is based on materials provided by University of Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefan Gerlich, Sandra Eibenberger, Mathias Tomandl, Stefan Nimmrichter, Klaus Hornberger, Paul J. Fagan, Jens Tόxen, Marcel Mayor, Markus Arndt. Quantum interference of large organic molecules. Nature Communications, 2011; 2: 263 DOI: 10.1038/ncomms1263

Cite This Page:

University of Vienna. "The 'molecular octopus': A little brother of 'Schroedinger’s cat'." ScienceDaily. ScienceDaily, 6 April 2011. <www.sciencedaily.com/releases/2011/04/110405151213.htm>.
University of Vienna. (2011, April 6). The 'molecular octopus': A little brother of 'Schroedinger’s cat'. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/04/110405151213.htm
University of Vienna. "The 'molecular octopus': A little brother of 'Schroedinger’s cat'." ScienceDaily. www.sciencedaily.com/releases/2011/04/110405151213.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins