Featured Research

from universities, journals, and other organizations

Biodiversity improves water quality in streams through a division of labor

Date:
April 7, 2011
Source:
University of Michigan
Summary:
Biologically diverse streams are better at cleaning up pollutants than less rich waterways, and an ecologist says he has uncovered the long-sought mechanism that explains why this is so.

Streams contain a variety of types of algae that remove pollutants from the water. This microscope image shows several species of algae similar to those used in the University of Michigan biodiversity study.
Credit: Danuta Bennett

Biologically diverse streams are better at cleaning up pollutants than less rich waterways, and a University of Michigan ecologist says he has uncovered the long-sought mechanism that explains why this is so.

Bradley Cardinale used 150 miniature model streams, which use recirculating water in flumes to mimic the variety of flow conditions found in natural streams. He grew between one and eight species of algae in each of the mini-streams, then measured each algae community's ability to soak up nitrate, a nitrogen compound that is a nutrient pollutant of global concern.

He found that nitrate uptake increased linearly with species richness. On average, the eight-species mix removed nitrate 4.5 times faster than a single species of algae grown alone. Cardinale reports his findings in the April 7 edition of the journal Nature.

"The primary implication of this paper is that naturally diverse habitats are pretty good at cleaning up the pollutants we dump into the environment, and loss of biodiversity through species extinctions could be compromising the ability of the planet to clean up after us," said Cardinale, an assistant professor at the U-M School of Natural Resources and Environment.

Why are more diverse streams better pollutant filters? Niche partitioning, Cardinale said.

In the stream experiments, each algae species was best adapted to a particular habitat in the stream and gravitated to that location -- its unique ecological niche. As more algae species were added, more of the available habitats were used, and the stream became a bigger, more absorbent sponge for nitrate uptake and storage.

Think of niche partitioning as a division of labor among specialist organisms.

"People as far back as Darwin have argued that species should have unique niches and, as a result, we should see a division of labor in the environment," Cardinale said. "But demonstrating that directly has proven very difficult.

"And so one of the primary contributions of this study is that I was able to nail the mechanism and show exactly why streams that have more species are better at removing these nutrient pollutants from the water," he said.

In the experiments, the channels inside each flume were lined with a continuous slab of molded plastic. The plastic provided a growth surface for the algae, and variations in the shape of the slab's surface created a variety of water features -- riffles, pools and eddies, for example -- found in real streams.

Evidence supporting the finding that niche partitioning was responsible for the results includes the fact that different morphological forms of algae dominated unique and complementary habitats in the streams, as predicted by ecological theory. High-velocity habitats were dominated by small, single-celled diatoms that latch onto the streambed in a way that is resistant to displacement by shear. Low-velocity habitats were dominated by large, filamentous algae that are susceptible to shear.

When the streams were simplified so that they contained just one habitat type, the effects of diversity on nitrate uptake disappeared, confirming that niche differences among species were responsible for the results.

The algal species used in the study included eight forms of diatom and green algae that are among the most widespread and abundant species in North American streams. The experiment was performed in the stream flume facility at the University of California, Santa Barbara.

Nitrate is an ingredient in many fertilizers and is found in surface runoff from agricultural land that makes its way into streams, lakes and coastal zones. It is a leading cause of degraded water quality worldwide.

"One of the obvious implications of this study is that if we want to enhance water quality in places like the Chesapeake Bay watershed or around the Great Lakes, then conserving natural biodiversity in our streams will have the added benefit of helping to clean up these larger bodies of water," Cardinale said.

The work was funded by grants from the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bradley J. Cardinale. Biodiversity improves water quality through niche partitioning. Nature, 2011; 472 (7341): 86 DOI: 10.1038/nature09904

Cite This Page:

University of Michigan. "Biodiversity improves water quality in streams through a division of labor." ScienceDaily. ScienceDaily, 7 April 2011. <www.sciencedaily.com/releases/2011/04/110406131807.htm>.
University of Michigan. (2011, April 7). Biodiversity improves water quality in streams through a division of labor. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2011/04/110406131807.htm
University of Michigan. "Biodiversity improves water quality in streams through a division of labor." ScienceDaily. www.sciencedaily.com/releases/2011/04/110406131807.htm (accessed August 2, 2014).

Share This




More Plants & Animals News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pyrenees Orphan Bear Cub Gets Brand New Home

Pyrenees Orphan Bear Cub Gets Brand New Home

AFP (Aug. 1, 2014) The discovery of a bear cub in the Pyrenees mountains made headlines in April 2014. Despire several attempts to find the animal's mother, the cub remained alone. Now, the Pyrenees Conservation Foundation has constructed an enclosure. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com
Rare Whale Fossil Pulled from Calif. Backyard

Rare Whale Fossil Pulled from Calif. Backyard

AP (Aug. 1, 2014) A rare whale fossil has been pulled from a Southern California backyard. The 16- to 17-million-year-old baleen whale fossil is one of about 20 baleen whale fossils known to exist. (Aug. 1) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins