Featured Research

from universities, journals, and other organizations

Battery-less chemical detector developed

Date:
May 9, 2011
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
Unlike many conventional chemical detectors that require an external power source, researchers have now developed a nanosensor that relies on semiconductor nanowires, rather than traditional batteries.

A battery-less chemical sensor relies on dynamic interactions of molecules with semiconductor nanowire surfaces that can induce electrical voltages between segments of nanowires.
Credit: Image courtesy of DOE/Lawrence Livermore National Laboratory

Unlike many conventional chemical detectors that require an external power source, Lawrence Livermore researchers have developed a nanosensor that relies on semiconductor nanowires, rather than traditional batteries.

Related Articles


The device overcomes the power requirement of traditional sensors and is simple, highly sensitive and can detect various molecules quickly. Its development could be the first step in making an easily deployable chemical sensor for the battlefield.

The Lab's Yinmin "Morris" Wang and colleagues Daniel Aberg, Paul Erhart, Nipun Misra, Aleksandr Noy and Alex Hamza, along with collaborators from the University of Shanghai for Science and Technology, have fabricated the first-generation battery-less detectors that use one-dimensional semiconductor nanowires.

The nanosensors take advantage of a unique interaction between chemical species and semiconductor nanowire surfaces that stimulate an electrical charge between the two ends of nanowires or between the exposed and unexposed nanowires.

The group tested the battery-less sensors with different types of platforms -- zinc-oxide and silicon -- using ethanol solvent as a testing agent.

In the zinc-oxide sensor the team found there was a change in the electric voltage between the two ends of nanowires when a small amount of ethanol was placed on the detector.

"The rise of the electric signal is almost instantaneous and decays slowly as the ethanol evaporates," Wang said.

However, when the team placed a small amount of a hexane solvent on the device, little electric voltage was seen, "indicating that the nanosensor selectively responds to different types of solvent molecules," Wang said.

The team used more than 15 different types of organic solvents and saw different voltages for each solvent. "This trait makes it possible for our nanosensors to detect different types of chemical species and their concentration levels," Wang said.

The response to different solvents was somewhat similar when the team tested the silicon nanosensors. However, the voltage decay as the solvent evaporated was drastically different from the zinc-oxide sensors. "The results indicate that it is possible to extend the battery-less sensing platform to randomly aligned semiconductor nanowire systems," Wang said.

The team's next step is to test the sensors with more complex molecules such as those from explosives and biological systems.

The research appears on the inside front cover of the Jan. 4 issue of Advanced Materials.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xianying Wang, Yinmin Wang, Daniel berg, Paul Erhart, Nipun Misra, Aleksandr Noy, Alex V. Hamza, Junhe Yang. Batteryless Chemical Detection with Semiconductor Nanowires. Advanced Materials, 2011; 23 (1): 117 DOI: 10.1002/adma.201003221

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Battery-less chemical detector developed." ScienceDaily. ScienceDaily, 9 May 2011. <www.sciencedaily.com/releases/2011/04/110406142347.htm>.
DOE/Lawrence Livermore National Laboratory. (2011, May 9). Battery-less chemical detector developed. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/04/110406142347.htm
DOE/Lawrence Livermore National Laboratory. "Battery-less chemical detector developed." ScienceDaily. www.sciencedaily.com/releases/2011/04/110406142347.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins