Featured Research

from universities, journals, and other organizations

New genetic tool helps researchers to analyze cells' most important functions

Date:
April 11, 2011
Source:
University of Gothenburg
Summary:
Although it has been many years since the human genome was first mapped, there are still many genes whose function we do not understand. Researchers from Sweden and Canada have teamed up to produce and characterize a collection of nearly 800 strains of yeast cells that make it possible to study even the most complicated of genes.

Although it has been many years since the human genome was first mapped, there are still many genes whose function we do not understand. Researchers from the University of Gothenburg, Sweden, and the University of Toronto, Canada, have teamed up to produce and characterize a collection of nearly 800 strains of yeast cells that make it possible to study even the most complicated of genes.

Related Articles


One common way of studying the role of genes in cells is to remove a gene and investigate the effect of the loss. Genes are very similar in both yeast and people, which is one reason why the baker's and brewer's yeast Saccharomyces cerevisiae has become a firm favourite with geneticists -- and in yeast it is easy to make this kind of genetic change.

However, this does not work for many genes as the loss causes the cells to die. These are known as essential genes and are therefore difficult to study. This is a major problem for researchers as essential genes are often involved in crucial life processes. These essential genes are also the most well-conserved over long evolutionary distances, like between humans and yeast.

Together with researchers from the University of Toronto, Anders Blomberg and Jonas Warringer from the University of Gothenburg's Department of Cell- and Molecular Biology have produced a collection of nearly 800 strains of yeast cells where the function of these essential genes can be studied. This new genetic tool is now being made available to other researchers.

"The trick is to use temperature-sensitive mutants for the genes you want to study," says professor Anders Blomberg. "These mutants have amino acid changes, which make the resultant protein sensitive to higher temperatures but able to function normally at normal temperatures. And at intermediary temperatures one can set the desired activity of the mutant protein."

The Gothenburg researchers have worked for many years on characterising the changes in yeast mutants that result from genetic changes or environmental factors automatically and on a large scale. They will continue to develop and characterize the new collection of yeast cells to facilitate the systematic analysis of the function of all essential genes.


Story Source:

The above story is based on materials provided by University of Gothenburg. Note: Materials may be edited for content and length.


Cite This Page:

University of Gothenburg. "New genetic tool helps researchers to analyze cells' most important functions." ScienceDaily. ScienceDaily, 11 April 2011. <www.sciencedaily.com/releases/2011/04/110411163912.htm>.
University of Gothenburg. (2011, April 11). New genetic tool helps researchers to analyze cells' most important functions. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/04/110411163912.htm
University of Gothenburg. "New genetic tool helps researchers to analyze cells' most important functions." ScienceDaily. www.sciencedaily.com/releases/2011/04/110411163912.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins