Featured Research

from universities, journals, and other organizations

Oxygenation at a depth of 120 meters could save the Baltic Sea, researchers demonstrate

Date:
April 18, 2011
Source:
University of Gothenburg
Summary:
Oxygenation brings dead sea bottoms to life. This creates the necessary conditions for the establishment of new ecosystems that enable nature itself to deal with eutrophication. By conducting pilot studies in two fjords in Sweden, researchers have demonstrated that pumping oxygen-rich surface water down to sea bottoms is effective. A large wind-driven pump is now to be tested in open water in the Baltic.

Illustration of wind-driven pump.
Credit: Inocean AB

Oxygenation brings dead sea bottoms to life. This creates the necessary conditions for the establishment of new ecosystems that enable nature itself to deal with eutrophication. By conducting pilot studies in two fjords in Sweden, researchers at the University of Gothenburg have demonstrated that pumping oxygen-rich surface water down to sea bottoms is effective. A large wind-driven pump is now to be tested in open water in the Baltic.

"Today everyone is focused on reducing nutrient inputs to the sea in order to reduce eutrophication in the Baltic, but by helping nature itself to deal with the phosphorus that is discharged we can create a turbo effect in the battle against eutrophication," says Anders Stigebrandt, Professor Emeritus at the Department of Earth Sciences, University of Gothenburg.

The idea of oxygenating dead sea bottoms comes from nature itself. The method of oxygenating the deep water in the Baltic can be compared to creating wetlands on land. Both methods are based on creating the conditions required for ecosystem services by establishing new ecosystems that can effectively bind the nutrients.

"If oxygen-free bottoms in the Baltic are oxygenated, it can be anticipated that every square kilometre of bottom surface will be able to bind 3 tonnes of phosphorus in a short time, which is a purely geochemical effect. If the bottoms are then kept oxygenated for a prolonged period, fauna becomes established on and in the bottoms. This leads to the bottom sediments being oxygenated down to a depth of several centimetres, and the new ecosystem probably contributes to the possibility of further phosphorus being bound to the sediment."

The research project Baltic Deepwater Oxygenation, directed by Stigebrandt, is testing the hypothesis that prolonged oxygenation of the Baltic deep water results in long-term and increasing binding of phosphorus in bottom sediment. An important question to be answered is how the oxygenated deep-water areas can bind phosphorus in the longer term. The answers are being sought through pilot studies in Byfjorden on the west coast and Kanholmsfjδrden on the east coast, as well as in laboratory experiments. The project includes examining how the oxygenated bottoms are colonised and how this affects phosphorus uptake.

Stigebrandt is now planning a trial involving large-scale wind-driven pumping in the open water of the Baltic, in cooperation with Inocean AB, which is designing the pump on the basis of established technology from the off-shore industry. The pump is contained in a 60 metres high and 100 metres deep tubular buoy which is anchored in an open location, in a deep basin yet to be decided off the east coast of Sweden. As a result of the buoy being given a small cross-sectional area at the water surface, the pump becomes non-sensitive to wave motions.

"The pump is to have capacity to pump 30 cubic metres of water per second, which is 15 times more than the pump in the Byfjord experiment. If this works, using a five times larger pump in a buoy around 120 metres deep should not pose major problems. This is the size we anticipate pumps needing to have in a future large-scale system for oxygenation of the Baltic deep water," says Stigebrandt.


Story Source:

The above story is based on materials provided by University of Gothenburg. Note: Materials may be edited for content and length.


Cite This Page:

University of Gothenburg. "Oxygenation at a depth of 120 meters could save the Baltic Sea, researchers demonstrate." ScienceDaily. ScienceDaily, 18 April 2011. <www.sciencedaily.com/releases/2011/04/110418141617.htm>.
University of Gothenburg. (2011, April 18). Oxygenation at a depth of 120 meters could save the Baltic Sea, researchers demonstrate. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/04/110418141617.htm
University of Gothenburg. "Oxygenation at a depth of 120 meters could save the Baltic Sea, researchers demonstrate." ScienceDaily. www.sciencedaily.com/releases/2011/04/110418141617.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) — Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) — With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) — Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins