Featured Research

from universities, journals, and other organizations

How inflammation can lead to cancer

Date:
April 19, 2011
Source:
Ohio State University Medical Center
Summary:
A new study shows how inflammation can help cause cancer. The study found that inflammation stimulates a rise in levels of a molecule called microRNA-155 (miR-155). This increase, in turn, causes a drop in levels of proteins involved in DNA repair, resulting in a higher rate of spontaneous gene mutations, which can contribute to cancer development. The findings suggest that drugs designed to reduce miR-155 levels might improve the treatment of inflammation-related cancers.

A new study shows how inflammation can help cause cancer. Chronic inflammation due to infection or to conditions such as chronic inflammatory bowel disease is associated with up to 25 percent of all cancers.

This study by researchers at the Ohio State University Comprehensive Cancer Center -- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC -- James) found that inflammation stimulates a rise in levels of a molecule called microRNA-155 (miR-155).

This, in turn, causes a drop in levels of proteins involved in DNA repair, resulting in a higher rate of spontaneous gene mutations, which can lead to cancer.

"Our study shows that miR-155 is upregulated by inflammatory stimuli and that overexpression of miR-155 increases the spontaneous mutation rate, which can contribute to tumorigenesis," says first author and post-doctoral researcher Dr. Esmerina Tili. "People have suspected for some time that inflammation plays an important role in cancer, and our study presents a molecular mechanism that explains how it happens."

"Our findings also suggest that drugs designed to reduce miR-155 levels might improve the treatment of inflammation-related cancers," Tili says.

The findings were published recently in the Proceedings of the National Academy of Sciences.

MicroRNAs form a large family of non-coding genes involved in many important cell processes. They carry out this function by suppressing the amount of particular proteins in cells, with each type of microRNA often affecting many different proteins.

MiR-155 is known to influence blood-cell maturation, immune responses and autoimmune disorders, and high levels of this molecule have been directly linked to the development of leukemias, and breast, lung and gastric cancers.

For this study, Tili and her colleagues examined the effects of inflammation-promoting substances such as tumor necrosis factor or lipopolysaccharide (found in the outer walls of bacteria) on miR-155 expression and on the frequency of spontaneous mutations in several breast-cancer cell lines.

When the researchers exposed breast-cancer cells to the two inflammatory factors the levels of miR-155 rose abnormally high, and the mutation rate increased two- to three-fold. To understand why, the investigators focused on the WEE1 gene, which stops the process of cell division to allow damaged DNA to be repaired.

The investigators learned that miR-155 also targets WEE1 and showed that high levels of miR-155 lead to low levels of WEE1. They reasoned that low levels of WEE1 allowed cell division to continue even when DNA damage is present, leading to a growing number of mutations.

"It is believed that cancer is caused by an accumulation of mutations in cells of the body," says principal investigator Dr. Carlo M. Croce, professor and chair of molecular virology, immunology and medical genetics, and director of the Human Cancer Genetics program the OSUCCC -- James. "Our study suggests that miR-155, which is associated with inflammation, increases the mutation rate and might be a key player in inflammation-induced cancers generally. This could make it an important therapeutic target."

Funding from the National Cancer Institute supported this research.

Croce is also the John W. Wolfe Chair in Human Cancer Genetics.

Other researchers involved in this study were Jean-Jacques Michaille, Dorothee Wernicke, Hansjuerg Alder, Stefan Costinean and Stefano Volinia of The Ohio State University.


Story Source:

The above story is based on materials provided by Ohio State University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Tili, J.-J. Michaille, D. Wernicke, H. Alder, S. Costinean, S. Volinia, C. M. Croce. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proceedings of the National Academy of Sciences, 2011; 108 (12): 4908 DOI: 10.1073/pnas.1101795108

Cite This Page:

Ohio State University Medical Center. "How inflammation can lead to cancer." ScienceDaily. ScienceDaily, 19 April 2011. <www.sciencedaily.com/releases/2011/04/110419091159.htm>.
Ohio State University Medical Center. (2011, April 19). How inflammation can lead to cancer. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2011/04/110419091159.htm
Ohio State University Medical Center. "How inflammation can lead to cancer." ScienceDaily. www.sciencedaily.com/releases/2011/04/110419091159.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins