Featured Research

from universities, journals, and other organizations

Universal signaling pathway found to regulate sleep

Date:
May 6, 2011
Source:
Brown University
Summary:
An unexpected observation in the C. elegans nematode may help explain the neurobiology of sleep in a wide variety of creatures, including humans.

While conducting aversion studies with the C. elegans nematode, researchers noticed something strange. Although nematodes are usually in almost constant motion, the ones with an overexpressed osm-11 gene started taking naps.
Credit: Hart Lab/Brown University

Sleeping worms have much to teach people, a notion famously applied by the children's show "Sesame Street," in which Oscar the Grouch often reads bedtime stories to his pet worm Slimy. Based on research with their own worms, a team of neurobiologists at Brown University and several other institutions has now found that "Notch," a fundamental signaling pathway found in all animals, is directly involved in sleep in the nematode C. elegans.

"This pathway is a major player in development across all animal species," said Anne Hart, associate professor of neuroscience at Brown. "The fact that this highly conserved pathway regulates how much these little animals sleep strongly suggests that it's going to play a critical role in other animals, including humans. The genes in this pathway are expressed in the human brain."

The work, to be published May 24 in the journal Current Biology, offers new insights into what controls sleep. The lead authors are Komudi Singh, a postdoctoral fellow in the Department of Neuroscience at Brown University, and Michael Chao, a previous member of the Hart laboratory, who is now an associate professor at California State University-San Bernardino.

"We understand sleep as little as we understand consciousness," said Hart, the paper's senior author. "We're not clear why sleep is required, how animals enter into a sleep state, how sleep is maintained, or how animals wake up. We're still trying to figure out what is critical at the cellular level and the molecular level."

Ultimately, Hart added, researchers could use that knowledge to develop more precise and safer sleep aids.

"We only have some really blunt tools that we can use to change sleep patterns," she said. "But there are definite side effects to manipulating sleep the way we do now."

Mysterious napping

Hart first realized that Notch pathway genes might be important for sleep when her group was investigating an entirely different behavior. She was studying the effect of this pathway on the nematodes' revulsion to an odious-smelling substance called octanol. What she found, and also reports in the Current Biology paper, is that adult nematodes without Notch pathway genes (like osm-11) have their Notch receptors turned off and, therefore, they do not avoid octanol as normal worms do.

But she was shocked to find that the adult nematodes in which the osm-11 gene was overexpressed were doing something quite bizarre. "Normally, adult nematodes spend all of their time moving" she said. "But, these animals suddenly start taking spontaneous 'naps.' It was the oddest thing I'd seen in my career."

Nematode sleep is not exactly the same as sleep in larger animals, but these worms do go into a quiescent sleep-like state when molting. The worms with too much osm-11 were dozing when they were not supposed to.

Other experiments showed that worms lacking osm-11 and the related osm-7 genes were hyperactive, exhibiting twice as many body bends each minute as normal nematodes.

The story became clear. The more Notch signaling was turned on, the sleepier the worms would be. When it is suppressed, they go into overdrive and become too active.

In humans, the gene that is most similar to osm-11 is called Deltalike1 (abbreviated DLK1). It is expressed in regions of the brain associated with the sleep-wake cycle.

Beyond Notch

That result alone is not enough to lead directly to the development of a new sleep drug, even for worms. Notch signaling is implicated in a lot of different activities in the body, Hart said, some of which should not be encouraged.

"Too much Notch signaling can cause cancer, so we would have to be very targeted in how we manipulate it," she said. "One of the next steps we're going to take is to look at the specific steps in Notch signaling that are pertinent to arousal and quiescence."

Focusing on those steps could minimize side effects, Hart said.

In addition to Hart, Singh, and Chao, other authors from Brown were Mark Corkins, Melissa Walsh, and Emma Beaumont, an intern from University of Bath. Authors who worked at Massachusetts General Hospital were Gerard Somers, Hidetoshi Komatsu, Jonah Larkins-Ford, Tim Tucey, and Heather Dionne. Author Douglas Hart is from the Massachusetts Institute of Technology and author Shawn Lockery is from the University of Oregon.

The National Institutes of Health and Massachusetts General Hospital funded the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Komudi Singh, Michael Y. Chao, Gerard A. Somers, Hidetoshi Komatsu, Mark E. Corkins, Jonah Larkins-Ford, Tim Tucey, Heather M. Dionne, Melissa B. Walsh, Emma K. Beaumont, Douglas P. Hart, Shawn R. Lockery, and Anne C. Hart. C. elegans Notch Signaling Regulates Adult Chemosensory Response and Larval Molting Quiescence. Current Biology, 2011; DOI: 10.1016/j.cub.2011.04.010

Cite This Page:

Brown University. "Universal signaling pathway found to regulate sleep." ScienceDaily. ScienceDaily, 6 May 2011. <www.sciencedaily.com/releases/2011/05/110505123941.htm>.
Brown University. (2011, May 6). Universal signaling pathway found to regulate sleep. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/05/110505123941.htm
Brown University. "Universal signaling pathway found to regulate sleep." ScienceDaily. www.sciencedaily.com/releases/2011/05/110505123941.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins