Featured Research

from universities, journals, and other organizations

Tiny talk on a barnacle's back: Scientists use new imaging technique to reveal complex microbial interactions

Date:
June 6, 2011
Source:
University of California - San Diego
Summary:
Researchers report using a new form of imaging mass spectrometry to dramatically visualize multiplex microbial interactions.

In this photo illustration, the Scripps Institution of Oceanography pier is shown with images generated using imaging mass spectrometry set between piling. One of the molecules identified in metabolic exchange by the study is illustrated along the upper course of the pier. Barnacles and other marine organisms cling to one of the pier's pilings.
Credit: Photo courtesy of Garlandcannon/Flickr

Even the merest of microbes must be able to talk, to be able to interact with its environment and with others to not just survive, but to thrive. This cellular chatter comes in the form of signaling molecules and exchanged metabolites (molecules involved in the process of metabolism or living) that can have effects far larger than the organism itself. Humans, for example, rely upon thousands of products derived from microbially produced molecules, everything from antibiotics and food supplements to ingredients used in toothpaste and paint.

Related Articles


Remarkably, most of what's known about how microbes communicate with each other is the result of indirect observation and measurements. There has been no general or informative technique for observing the manifold metabolic exchange and signaling interactions between microbes, their hosts and environments. Until now. In a paper published in the May 5 online issue of the journal Angewandte Chemie, researchers at the UC San Diego School of Medicine and Scripps Institution of Oceanography report using a new form of imaging mass spectrometry to dramatically visualize multiplex microbial interactions.

"Being able to better see and understand the metabolic interplay between microbial communities and their surrounding biology means we can better detect and characterize the molecules involved and perhaps discover new and better therapeutic and commercially viable compounds," said Pieter C. Dorrestein, PhD, associate professor at the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences and the paper's senior author.

Dorrestein and colleagues used matrix-assisted laser desorption ionization (MALDI) mass spectrometry, a relatively new approach that creates two-dimensional, spatial images of microbes and biomolecules (proteins, peptides, sugars) too fragile to withstand other mass spectrometry techniques.

As their first subject, the scientists collected marine microbial assemblages scraped off the slimy surfaces of a barnacle attached to the Scripps Pier. The resulting images, produced after careful preparation, offered new revelations.

"One of the things we see that we haven't with other techniques is that the dialog between microbes is multiplexed," said Dorrestein. "There are many conversations going on at the same time, many changes happening at the same time. We see competition for resources such as iron, but also that microbes secrete molecules that alter the phenotypes (sets of observable characteristics) of neighboring organisms."

Dorrestein said the ability to better visualize the vastly complex world of microbial communication is changing the ways scientists investigate how two or more microbes are studied and eventually engineered.

"Rather than enumerating which microbes are present, as in many metagenomic efforts, our current approach is anticipated to address the why, when and how questions of microbial interactions instead of just the who," Dorrestein said.

Co-authors of the paper are Yu-Liang Yang, Yuquan Xu, Michael J. Meehan, Bradley S. Moore, Nuno Bandeira, UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences; Roland Kersten, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, UCSD; Wei-Ting Liu, UCSD Department of Chemistry and Biochemistry.

Funding for this research was provided, in part, by the National Institutes of Health and the Beckman Foundation.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Scott LaFee. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yu-Liang Yang, Yuquan Xu, Roland D. Kersten, Wei-Ting Liu, Michael J. Meehan, Bradley S. Moore, Nuno Bandeira, Pieter C. Dorrestein. Connecting Chemotypes and Phenotypes of Cultured Marine Microbial Assemblages by Imaging Mass Spectrometry. Angewandte Chemie, 2011; DOI: 10.1002/ange.201101225

Cite This Page:

University of California - San Diego. "Tiny talk on a barnacle's back: Scientists use new imaging technique to reveal complex microbial interactions." ScienceDaily. ScienceDaily, 6 June 2011. <www.sciencedaily.com/releases/2011/05/110510141433.htm>.
University of California - San Diego. (2011, June 6). Tiny talk on a barnacle's back: Scientists use new imaging technique to reveal complex microbial interactions. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/05/110510141433.htm
University of California - San Diego. "Tiny talk on a barnacle's back: Scientists use new imaging technique to reveal complex microbial interactions." ScienceDaily. www.sciencedaily.com/releases/2011/05/110510141433.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins