Featured Research

from universities, journals, and other organizations

Exposing ZnO nanorods to visible light removes microbes, researchers in Thailand show

Date:
May 13, 2011
Source:
Asian Institute of Technology
Summary:
The practical use of visible light and zinc oxide nanorods for destroying bacterial water contamination has been successfully demonstrated by researchers in Thailand. ZnO has now been tested under solar light, instead of the traditionally used UV light, suggesting a huge potential for commercial applications.

The practical use of visible light and zinc oxide nanorods for destroying bacterial water contamination has been successfully demonstrated by researchers at the Asian Institute of Technology (AIT). Nanorods grown on glass substrates and activated by solar energy have been found to be effective in killing both gram positive and gram negative bacteria -- a finding that has immense possibilities for affordable and environmentally friendly water purification techniques.

"Most studies so far either work on the use of ultraviolet light or involve a suspension of nanoparticles," revealed Prof. Joydeep Dutta, director of the Center for Excellence in Nanotechnology at AIT. The AIT research group has dispensed with both. Instead of using a suspension of nanoparticles, which have to be removed later after the water purification process, or relying on UV light, the group demonstrated a system featuring visible light and ZnO nanorods. "The key concept was to incorporate deliberate defects in ZnO nanorods by creating oxygen vacancies and interstitials, which then allows visible light absorption," he explained.

Environmentally friendly approach

Such ZnO nanorods grown on glass were tested on Escherichia coli and Bacillus subtilis bacteria, which are commonly used as model microbes. In the dark, ZnO dissolves slowly releasing zinc ions, which have anti bacterial properties, as it penetrates the bacterial cell envelope thereby thwarting the growth of microbes. Under well lit conditions, the effect is doubled with both photocatalysis and zinc ions playing their part in killing the microbes.

The implications of these experiments are enormous. "Since ZnO has now been tested under solar light, instead of the traditionally used UV light, the potential for commercial applications is huge, particularly since the levels of zinc ions removed from the rods to the water are safe for human consumption," added Dutta.

The team, which also includes Dr. Oleg V Shipin, Ajaya Sapkota, Dr. Alfredo J Anceno, Mr. Sunandan Baruah and Ms. Mayuree Jaisai, is continuing its work on photocatalysis for use in water decontamination.


Story Source:

The above story is based on materials provided by Asian Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ajaya Sapkota, Alfredo J Anceno, Sunandan Baruah, Oleg V Shipin, Joydeep Dutta. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology, 2011; 22 (21): 215703 DOI: 10.1088/0957-4484/22/21/215703

Cite This Page:

Asian Institute of Technology. "Exposing ZnO nanorods to visible light removes microbes, researchers in Thailand show." ScienceDaily. ScienceDaily, 13 May 2011. <www.sciencedaily.com/releases/2011/05/110512091808.htm>.
Asian Institute of Technology. (2011, May 13). Exposing ZnO nanorods to visible light removes microbes, researchers in Thailand show. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/05/110512091808.htm
Asian Institute of Technology. "Exposing ZnO nanorods to visible light removes microbes, researchers in Thailand show." ScienceDaily. www.sciencedaily.com/releases/2011/05/110512091808.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins