Featured Research

from universities, journals, and other organizations

Movement without muscles: Zoologists on trail of evolution of body contractions

Date:
May 23, 2011
Source:
Friedrich-Schiller-Universitaet Jena
Summary:
All animals move -- cheetahs faster, snails more slowly. Muscle contractions are the basis of movement in many, but not all, species. Some animal groups don't have any muscles at all, as they branched off from the evolutionary path before muscle cells evolved. Yet these animal groups -- for instance, the sea sponges -- are not incapable of movement. Sponges are able to contract without muscles. But which cells in sponges are actually contracting?

The sponge Tethya wilhelma has become a model organism for evolutionary questions.
Credit: Photo by Michael Nickel/FSU Jena

All animals move -- cheetahs faster, snails more slowly. Muscle contractions are the basis of movement in many, but not all, species. Some animal groups don't have any muscles at all, as they branched off from the evolutionary path before muscle cells evolved. Yet these animal groups -- for instance, the sea sponges -- are not incapable of movement. Sponges are able to contract without muscles. But which cells in sponges are actually contracting?

A group of scientists headed by associate professor Dr. Michael Nickel of Friedrich Schiller University Jena (Germany) is looking into movement without muscles. The scientists from the Institute of Systematic Zoology and Evolutionary Biology are especially interested in the question of which evolutionary forerunners did muscle cells derive from.

In a new study published in the Journal of Experimental Biology, the evolutionary biologists are offering new answers to this question. In their paper, the researchers described how they generated three-dimensional (3-D) images, with the help of synchrotron radiation-based X-ray microtomography. Using this technique, the Jena scientists, in co-operation with the Helmholtz-Zentrum Gesthacht at the Deutsches Elektronen Synchrotron Hamburg, were able to compare and visualize the 3-D structure of contracted and expanded sponges.

"A key feature of our approach is the use of 3-D data for measuring the volume and surface of our sponges," says Nickel. "Although the 3-D volumetric analysis is widely known and used in the technical sciences, it has rarely been used in zoology -- in spite of its enormous information potential."

Nickel's team was able to show that the inner and outer surfaces -- and therefore the epithelial cells, so-called pinacozytes -- cause the strong body contractions of the sponges. Ultimately, the Jena scientists believe they have also settled a hundred-year-old debate about the cause of cellular contractions. Until recently, spindle-shaped cells in the tissue of sponges as well as epithelial cells were thought to be possible candidates. But now, the Jena scientists have been able to identify the true initiator of the contractions.

These findings offer new approaches to understanding the evolutionary development of musculature. "The early evolution of muscles has not been fully understood so far. According to current scientific knowledge, muscle cells seem to have surfaced from nowhere," Nickel says. "But surely there must have been evolutionary predecessor systems, that have been unknown until now." The sponge epithelial cells are now moving to the forefront in the evolutionary biologists' continuing research in this field. "There is a lot of evidence that the sponge epithelial cells and the muscle cells of all the other animals are going back to a common contractile cellular predecessor." In future, scientists hope to test this hypothesis using genome and gene expression-related data.


Story Source:

The above story is based on materials provided by Friedrich-Schiller-Universitaet Jena. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Nickel, C. Scheer, J. U. Hammel, J. Herzen, F. Beckmann. The contractile sponge epithelium sensu lato - body contraction of the demosponge Tethya wilhelma is mediated by the pinacoderm. Journal of Experimental Biology, 2011; 214 (10): 1692 DOI: 10.1242/jeb.049148

Cite This Page:

Friedrich-Schiller-Universitaet Jena. "Movement without muscles: Zoologists on trail of evolution of body contractions." ScienceDaily. ScienceDaily, 23 May 2011. <www.sciencedaily.com/releases/2011/05/110512104212.htm>.
Friedrich-Schiller-Universitaet Jena. (2011, May 23). Movement without muscles: Zoologists on trail of evolution of body contractions. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/05/110512104212.htm
Friedrich-Schiller-Universitaet Jena. "Movement without muscles: Zoologists on trail of evolution of body contractions." ScienceDaily. www.sciencedaily.com/releases/2011/05/110512104212.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins