Featured Research

from universities, journals, and other organizations

Strong, tough and now cheap: New way to process metallic glass developed

Date:
May 13, 2011
Source:
California Institute of Technology
Summary:
Stronger than steel or titanium -- and just as tough -- metallic glass is an ideal material for everything from cell-phone cases to aircraft parts. Now, researchers have developed a new technique that allows them to make metallic-glass parts utilizing the same inexpensive processes used to produce plastic parts.

A metallic-glass rod before heating and molding (left); a molded metallic-glass part (middle); the final product with its excess material trimmed off (right).
Credit: Marios D. Demetriou

Stronger than steel or titanium -- and just as tough -- metallic glass is an ideal material for everything from cell-phone cases to aircraft parts. Now, researchers at the California Institute of Technology (Caltech) have developed a new technique that allows them to make metallic-glass parts utilizing the same inexpensive processes used to produce plastic parts. With this new method, they can heat a piece of metallic glass at a rate of a million degrees per second and then mold it into any shape in just a few milliseconds.

Related Articles


"We've redefined how you process metals," says William Johnson, the Ruben F. and Donna Mettler Professor of Engineering and Applied Science. "This is a paradigm shift in metallurgy." Johnson leads a team of researchers who are publishing their findings in the May 13 issue of the journal Science.

"We've taken the economics of plastic manufacturing and applied it to a metal with superior engineering properties," he says. "We end up with inexpensive, high-performance, precision net-shape parts made in the same way plastic parts are made -- but made of a metal that's 20 times stronger and stiffer than plastic." A net-shape part is a part that has acquired its final shape.

Metallic glasses, which were first discovered at Caltech in 1960 and later produced in bulk form by Johnson's group in the early 1990s, are not transparent like window glass. Rather, they are metals with the disordered atomic structure of glass. While common glasses are generally strong, hard, and resistant to permanent deformation, they tend to easily crack or shatter. Metals tend to be tough materials that resist cracking and brittle fracture -- but they have limited strength. Metallic glasses, Johnson says, have an exceptional combination of both the strength associated with glass and the toughness of metals.

To make useful parts from a metallic glass, you need to heat the material until it reaches its glass-transition phase, at about 500-600 degrees C. The material softens and becomes a thick liquid that can be molded and shaped. In this liquid state, the atoms tend to spontaneously arrange themselves to form crystals. Solid glass is formed when the molten material refreezes into place before its atoms have had enough time to form crystals. By avoiding crystallization, the material keeps its amorphous structure, which is what makes it strong.

Common window glass and certain plastics take from minutes to hours -- or longer -- to crystallize in this molten state, providing ample time for them to be molded, shaped, cooled, and solidified. Metallic glasses, however, crystallize almost immediately once they are heated to the thick-liquid state. Avoiding this rapid crystallization is the main challenge in making metallic-glass parts.

Previously, metallic-glass parts were produced by heating the metal alloy above the melting point of the crystalline phase -- typically over 1,000 degrees C. Then, the molten metal is cast into a steel mold, where it cools before crystallizing. But problems arise because the steel molds are usually designed to withstand temperatures of only around 600 degrees C. As a result, the molds have to be frequently replaced, making the process rather expensive. Furthermore, at 1,000 degrees C, the liquid is so fluid that it tends to splash and break up, creating parts with flow defects.

If the solid metallic glass is heated to about 500-600 degrees C, it reaches the same fluidity that liquid plastic needs to have when it's processed. But it takes time for heat to spread through a metallic glass, and by the time the material reaches the proper temperature throughout, it has already crystallized.

So the researchers tried a new strategy: to heat and process the metallic glass extremely quickly. Johnson's team discovered that, if they were fast enough, they could heat the metallic glass to a liquid state that's fluid enough to be injected into a mold and allowed to freeze -- all before it could crystallize.

To heat the material uniformly and rapidly, they used a technique called ohmic heating. The researchers fired a short and intense pulse of electrical current to deliver an energy surpassing 1,000 joules in about 1 millisecond -- about one megawatt of power -- to heat a small rod of the metallic glass.

The current pulse heats the entire rod -- which was 4 millimeters in diameter and 2 centimeters long -- at a rate of a million degrees per second. "We uniformly heat the glass at least a thousand times faster than anyone has before," Johnson says. Taking only about half a millisecond to reach the right temperature, the now-softened glass could be injected into a mold and cooled -- all in milliseconds. To demonstrate the new method, the researchers heated a metallic-glass rod to about 550 degrees C and then shaped it into a toroid in less than 40 milliseconds. Despite being formed in open air, the molded toroid is free of flow defects and oxidation.

In addition, this process allows researchers to study these materials in their molten states, which was never before possible. For example, by heating the material before it can crystallize, researchers can examine the crystallization process itself on millisecond time scales. The new technique, called rapid discharge forming, has been patented and is being developed for commercialization, Johnson says. In 2010, he and his colleagues started a company, Glassimetal Technology, to commercialize novel metallic-glass alloys using this kind of plastic-forming technology.

The other authors on the Science paper, "Beating crystallization in glass-forming metals by millisecond heating and processing," are Caltech's Georg Kaltenboeck, Marios D. Demetriou, Joseph P. Schramm, Xiao Liu, Konrad Samwer (a visiting associate from the University of Gottingen, Germany), C. Paul Kim, and Douglas C. Hofmann. This research benefited from support by the II-VI Foundation.


Story Source:

The above story is based on materials provided by California Institute of Technology. The original article was written by Marcus Woo. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. L. Johnson, G. Kaltenboeck, M. D. Demetriou, J. P. Schramm, X. Liu, K. Samwer, C. P. Kim, D. C. Hofmann. Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing. Science, 2011; 332 (6031): 828 DOI: 10.1126/science.1201362

Cite This Page:

California Institute of Technology. "Strong, tough and now cheap: New way to process metallic glass developed." ScienceDaily. ScienceDaily, 13 May 2011. <www.sciencedaily.com/releases/2011/05/110512150815.htm>.
California Institute of Technology. (2011, May 13). Strong, tough and now cheap: New way to process metallic glass developed. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/05/110512150815.htm
California Institute of Technology. "Strong, tough and now cheap: New way to process metallic glass developed." ScienceDaily. www.sciencedaily.com/releases/2011/05/110512150815.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

Buzz60 (Oct. 23, 2014) New York City officials announce a new technology initiative for the NYPD. Tim Minton reports smartphones and tablets will be given to more than 40,000 NYPD officers and detectives in an effort to change the way they perform their duties. Video provided by Buzz60
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins