Featured Research

from universities, journals, and other organizations

Smoke-related chemical discovered in the atmosphere could have health implications

Date:
May 17, 2011
Source:
National Oceanic and Atmospheric Administration
Summary:
Cigarette smoking, forest fires and woodburning can release a chemical that may be at least partly responsible for human health problems related to smoke exposure, according to a new study. "We found isocyanic acid in a number of places, from air in downtown Los Angeles and air downwind of a Colorado wildfire, to cigarette smoke," said the lead author.

Smoke from the Fourmile Canyon wildfire west of Boulder, Colo. in fall 2010 flows toward the city to the right of the image. A new NOAA study found isocyanic acid in the smoke from that fire -- and in urban Los Angeles air, in cigarette smoke, and in laboratory-simulated wildfires. That acid has been linked with health effects from cataracts to cardiovascular disease.
Credit: Photograph courtesy of Daniel Lack, NOAA/CIRES

Cigarette smoking, forest fires and woodburning can release a chemical that may be at least partly responsible for human health problems related to smoke exposure, according to a new study by NOAA researchers and their colleagues.

Using a custom mass spectrometer designed by the researchers, the NOAA-led team was able get the first look at levels of the chemical, isocyanic acid, in the atmosphere. Isocyanic acid has been difficult to detect with conventional measurement techniques.

"We found isocyanic acid in a number of places, from air in downtown Los Angeles and air downwind of a Colorado wildfire, to cigarette smoke," said Jim Roberts, lead author of the new paper and a chemist with NOAA's Earth System Research Laboratory in Boulder, Colo. "We also demonstrated that it dissolves readily in water, which means that humans can be exposed directly if it gets into eyes or lungs."

The health effects of such exposure are not fully known. In the body isocyanic acid, described by the chemical formula HNCO, is part of a biochemical pathway linked with cataracts and inflammation that can trigger cardiovascular disease and rheumatoid arthritis. Until now, the acid had not been measured in air outdoors or in tobacco smoke.

The research team made four separate measurements of HNCO: in the air in urban Los Angeles; in the air in Boulder downwind of the fall 2010 Fourmile Canyon wildfire; in laboratory burning experiments at high concentrations; and in cigarette smoke. The team also made the first measurements of the acid's ability to dissolve in water, which determines the chemical's tendency to dissolve into moist tissues in the body.

"There are literally billions of people in the world who burn biomass for cooking and heating," Roberts said. "If these indoor fires release similar levels of isocyanic acid as the fires we studied in the laboratory, families could be exposed to high levels of the chemical."

Roberts and colleagues from NOAA and University of Colorado at Boulder's Cooperative Institute for Research in Environmental Sciences, the, North Carolina Agricultural and Technical State University and the University of Montana published their paper in the May 17 edition of the Proceedings of the National Academy of Sciences.

The research project started in the Missoula Fire Sciences Laboratory, where scientists burned brush, tree branches and other vegetation, to better understand the air quality effects of wildfires. They used a new, specialized instrument -- a mass spectrometer built by Roberts and several colleagues -- to measure the amounts of a suite of organic acids, which are emitted by burning vegetation. Such acids are involved in chemistry that can degrade air quality.

During simulated wildfires in the Montana laboratory, levels of HNCO approached 600 parts per billion volume (ppbv). The HNCO was a few thousand times less concentrated in both the air in Los Angeles during a time without recent fires, and in the air in Boulder when the Fourmile Canyon fire was burning upwind.

At about 1 ppbv, the research team calculated that enough HNCO would dissolve into exposed tissues -- lungs and eyes -- that those tissues could be vulnerable to "carbamylation," part of the chemical process triggering inflammation and cataract development. People could experience higher exposure to HNCO near wildfires or in indoor environments where coal, wood or other biomass is burned for heating or cooking. The health effects of chronic exposure to lower-level amounts isocyanic acid, such as those found in the California and Colorado air are not known.

The extreme sensitivity of the new instrument to low concentrations of HNCO made it impossible to quantify the very high levels of isocyanic acid in cigarette smoke.

"We conclude that tobacco-derived HNCO needs to be measured more extensively and potential exposure to it quantified," the scientists wrote, adding that the acid is not currently listed as a "harmful" or "potentially harmful" constituent in tobacco products or smoke.

In their paper, researchers noted other sources of atmospheric HNCO, including pollution-control equipment that is being introduced in California and Europe to reduce emissions by diesel trucks. The systems are designed to reduce nitrogen oxides, which contribute to air quality problems, but they emit HNCO as a by-product. This new source could increase human exposure to the chemical in urban areas.

Moreover, climate change is expected to bring hotter temperatures and drier conditions to some regions of the world, with accompanying increases in biomass burning, including wildfire. "We may be facing a future of higher amounts of HNCO in the atmosphere," said Roberts. "It is fortunate that now we can measure it."


Story Source:

The above story is based on materials provided by National Oceanic and Atmospheric Administration. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. M. Roberts, P. R. Veres, A. K. Cochran, C. Warneke, I. R. Burling, R. J. Yokelson, B. Lerner, J. B. Gilman, W. C. Kuster, R. Fall, J. de Gouw. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proceedings of the National Academy of Sciences, 2011; 108 (22): 8966 DOI: 10.1073/pnas.1103352108

Cite This Page:

National Oceanic and Atmospheric Administration. "Smoke-related chemical discovered in the atmosphere could have health implications." ScienceDaily. ScienceDaily, 17 May 2011. <www.sciencedaily.com/releases/2011/05/110516161344.htm>.
National Oceanic and Atmospheric Administration. (2011, May 17). Smoke-related chemical discovered in the atmosphere could have health implications. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2011/05/110516161344.htm
National Oceanic and Atmospheric Administration. "Smoke-related chemical discovered in the atmosphere could have health implications." ScienceDaily. www.sciencedaily.com/releases/2011/05/110516161344.htm (accessed September 14, 2014).

Share This



More Earth & Climate News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

AFP (Sep. 12, 2014) — In June 2013, 10 foreign mountaineers and their guide were murdered on Nanga Parbat, an iconic peak that stands at 8,126m tall in northern Pakisan. Duration: 02:34 Video provided by AFP
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) — Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
The Ozone Layer Is Recovering, But It's Not All Good News

The Ozone Layer Is Recovering, But It's Not All Good News

Newsy (Sep. 11, 2014) — The Ozone layer is recovering thickness! Hooray! But in helping its recovery, we may have also helped put more greenhouse gases out there. Hooray? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins