Featured Research

from universities, journals, and other organizations

Lecithin component may reduce fatty liver, improve insulin sensitivity

Date:
May 25, 2011
Source:
Baylor College of Medicine
Summary:
A natural product called DLPC (dilauroyl phosphatidylcholine) increases sensitivity to insulin and reduces fatty liver in mice, leading researchers to believe it may provide a treatment for prediabetic patients. DLPC is an unusual phospholipid and a trace component of the dietary supplement lecithin.

A natural product called DLPC (dilauroyl phosphatidylcholine) increases sensitivity to insulin and reduces fatty liver in mice, leading Baylor College of Medicine researchers to believe it may provide a treatment for prediabetic patients. DLPC is an unusual phospholipid and a trace component of the dietary supplement lecithin.

Related Articles


Dr. David D. Moore, professor of molecular and cellular biology at BCM, and his colleagues at first thought that DLPC would provide a useful tool in studying the function of a receptor protein -- liver receptor homolog -1 or LRH-1 -- that regulates the production of bile acids in the liver.

Stimulating LRH-1 activity

Studies in mice soon showed that DLPC could stimulate LRH-1 activity. In addition to a small increase in bile acid levels, DLPC improved regulation of glucose and fat within the liver. A report on this work appears in the current issue of the journal Nature. Moore is collaborating with Dr. Lawrence Chan, director of the Diabetes and Endocrine Research Center at BCM, on a pilot study to find out how well DLPC works in patients with prediabetes.

"We know it works well in mice," said Moore. The link of LRH-1 to bile acids may contribute to its effect on glucose levels and fat because small, non-toxic increases in bile acid levels can improve metabolic disorders.

Dr. Jae Man Lee, then a graduate student in Moore's laboratory, first proposed screening compounds to see which activated LRH-1. He found that DLPC, a structurally unusual phosphatidylcholine (a form of phospholipid that is important in the formation of cell membranes) enhanced LRH-1 activity in cells.

In mice, DLPC induced the production of bile acid enzymes and lowered fat in the liver. It also increased levels of bile acids and regulated glucose or sugar circulating in the blood. In two kinds of mice that had resistance to insulin, DLPC also decreased fatty liver and lowered glucose levels in the blood. However, DLPC had no effect in mice that had no LRH-1 in the liver.

Effect on insulin resistant mice was striking

"Their overall body weight was not changed," said Moore. "But they had improved sensitivity to insulin (which helps keep glucose levels in check) and less fatty livers. We are interested in why it gets rid of the fat in the liver."

DLPC decreased the levels of proteins associated with formation of fatty acids and triglycerides, including a key regulator called SREBP-1c that encourages the deposition of fat in tissues.

"DLPC is a natural product," said Moore. "Lecithin is a mixture of many compounds but DLPC is one of them."

Clinical study underway

The ongoing clinical study, which involves people who are overweight but not diabetic, employs an approved form of DLPC that is used in liposomes, little globules of fat that take drugs into the body. An initial glucose tolerance test to determine how sensitive the people are to insulin at the start of the study is followed by another after the subjects take DLPC or a placebo for two months. Neither the patients in study nor the physicians know who is getting DLPC and who is getting the placebo.

Others who took part in the basic science research include Dr. Yoon Kwang Lee and Jennifer L. Mamrosh of BCM, Dr. Scott A. Busby and Dr. Patrick R. Griffin of Scripps Research Institute in Jupiter, Florida and Dr. Manish C. Pathak and Dr. Eric A. Ortlund of Emory University School of Medicine in Atlanta. (Yoon Kwang Lee is now at Northeastern Ohio Colleges of Medicine and Pharmacy in Rootstown, Ohio).

Funding for this work came from the National Institutes of Health, the Alkek Foundation, the National Institute of Diabetes and Digestive and Kidney Diseases and the Robert R.P. Doherty Jr. -- Welch Chair in Science.


Story Source:

The above story is based on materials provided by Baylor College of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jae Man Lee, Yoon Kwang Lee, Jennifer L. Mamrosh, Scott A. Busby, Patrick R. Griffin, Manish C. Pathak, Eric A. Ortlund, David D. Moore. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature, 2011; DOI: 10.1038/nature10111

Cite This Page:

Baylor College of Medicine. "Lecithin component may reduce fatty liver, improve insulin sensitivity." ScienceDaily. ScienceDaily, 25 May 2011. <www.sciencedaily.com/releases/2011/05/110525131703.htm>.
Baylor College of Medicine. (2011, May 25). Lecithin component may reduce fatty liver, improve insulin sensitivity. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/05/110525131703.htm
Baylor College of Medicine. "Lecithin component may reduce fatty liver, improve insulin sensitivity." ScienceDaily. www.sciencedaily.com/releases/2011/05/110525131703.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins