Featured Research

from universities, journals, and other organizations

Heartbeat of nanoparticles made visible

Date:
June 2, 2011
Source:
University of Stuttgart
Summary:
Even tiny gold nanoparticles, with a diameter of only 40 millionths of a millimeter, have something like a heartbeat. When focusing a short laser pulse on the particles they heat up very briefly and start to vibrate. But even the best microscopes can not resolve these nanoparticles, which are therefore very difficult to study.

Triangular nanoantennas focus laser light on a small gold dot in the center, which starts to oscillate and to modulate the transmitted laser beam.
Credit: Image courtesy of University of Stuttgart

Even tiny gold nanoparticles, with a diameter of only 40 millionths of a millimeter, have something like a heartbeat. When focusing a short laser pulse on the particles they heat up very briefly and start to vibrate. But even the best microscopes can not resolve these nanoparticles, which are therefore very difficult to study.

Related Articles


Now, assistant professor Markus Lippitz from the Max Planck Institute for Solid State Research, together with his Ph.D. student Thorsten Schumacher have achieved a breakthrough in this area. Reporting in the journal Nature Communications, the researchers used a nanoantenna, which has already been applied successfully as a nanosensor by Prof. Harald Giessen from the 4th Physics Institute of the University of Stuttgart.

As in a mobile phone

Lippitz' goal is to investigate the mechanical properties of the smallest nanoparticles. "The surface to volume ratio would then be huge, and we would expect new nanomechanical properties," he explains. To get one step closer to this dream, he placed a small antenna near the tiny particle. This nanoantenna focuses the laser light very tightly on the nanoparticle under examination. Consequently, the light modulation due to the nanomechanical vibrations are very efficiently coupled back into the laser beam. "This is the first time that someone uses nanoantennas to investigate ultrafast nonlinear optical effects. The whole thing works like a mobile phone, in which the antenna makes that the electromagnetic waves are effectively coupled into the small electronic circuits of the phone" Lippitz explains.

Lippitz sees a huge potential for his new method: "In the future, we will be able to put the smallest nano-objects of a few nanometers in diameter in the focal point of a nanoantenna and study them using non-linear optical processes of only a few femtoseconds in duration (1 femtosecond = 1 millionth of a billionth of a second). Then we can make movies on the nanoscale, using the most extreme slow motion. Not only can we investigate nanoobjects such as semiconductor quantum dots, but also chemical and biological objects, such as molecules and viruses."

The work of Lippitz was funded by the state of Baden-Wόrttemberg within the junior professors initiative and by the Deutsche Forschungsgemeinschaft and the Federal Ministry of Education and Research.


Story Source:

The above story is based on materials provided by University of Stuttgart. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thorsten Schumacher, Kai Kratzer, David Molnar, Mario Hentschel, Harald Giessen, Markus Lippitz. Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nature Communications, 2011; 2: 333 DOI: 10.1038/ncomms1334

Cite This Page:

University of Stuttgart. "Heartbeat of nanoparticles made visible." ScienceDaily. ScienceDaily, 2 June 2011. <www.sciencedaily.com/releases/2011/06/110601074854.htm>.
University of Stuttgart. (2011, June 2). Heartbeat of nanoparticles made visible. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/06/110601074854.htm
University of Stuttgart. "Heartbeat of nanoparticles made visible." ScienceDaily. www.sciencedaily.com/releases/2011/06/110601074854.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) — A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) — The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) — Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins