Featured Research

from universities, journals, and other organizations

How important are climate models for revealing the causes of environmental change?

Date:
June 6, 2011
Source:
Wiley-Blackwell
Summary:
The human impact on the environment, especially through the release of greenhouse gases, is an area of controversy in public understanding of climate change, and is important for predicting future changes. Many studies into our collective impact use climate models to understand the causes of observed climate changes, both globally and in specific regions. In a new article, experts assess the role of climate models in studies of observed changes and the robustness of their results.

The human impact on the environment, especially through the release of greenhouse gases, is an area of controversy in public understanding of climate change, and is important for predicting future changes. Many studies into our collective impact use climate models to understand the causes of observed climate changes, both globally and in specific regions. Writing in WIREs Climate Change, Professors Gabriele Hegerl from the University of Edinburgh and Francis Zwiers from the University of Victoria assess the role of climate models in studies of observed changes and the robustness of their results.

"Since the mid-1990s, a wide range of studies have shown that greenhouse gas increases have influenced the climate, globally and regionally, affecting many variables," said Hegerl. "However, even to scientists, the roles of observations, physical insight, and climate models in estimates of the human contribution to recent climate change are not always clear."

In this review paper the authors assess research methods for understanding the causes of observed climate change, ranging from approaches that refrain from using climate models, to different approaches using models including 'fingerprint' analysis and large-scale detection and attribution studies.

"Detection and attribution methods attempt to separate observed climate changes into components that can be explained either by the variability of the climate system or external changes, such as human activity," said Hegerl. "Most detection and attribution studies use climate models to interpret the observations. Models are used both to determine the expected 'fingerprint' of climate change and to access the uncertainty in the estimated magnitude of observations given climate variability."

Hegerl and Zwiers also explore how some researchers have attempted to identify human-made and externally forced climate change from observations only. However, while methods that do not use climate models avoid assumptions about the expected response, they do use other strong assumptions, such as the response to forcing being instantaneous or that climate change and variability can be separated by timescale.

Another challenge facing observation based studies is the impact of natural events, such as volcanic activity which bellows dust and aerosols into the stratosphere, which could have an anomalous cooling effect for a few years.

Professor Hegerl argues that research which does not rely on climate models makes strong assumptions about how the effects of human influence on the climate can be distinguished from the effects of the natural variability of the climate system. This research supports the conclusion that human influence has changed recent temperatures that is drawn from studies that use models. These strong assumptions do not have to be made when using physically based climate models, but because climate models are not perfect their use does introduce other uncertainties. These uncertainties are small for large-scale temperature change, but are larger and less well understood for changes related to impacts, such as regional temperatures, extremes, and precipitation.

"Our review discusses the role climate models play in determining the causes of recent climate change, and shows that results about the causes of recent climate change are firmly based on observations," concluded Hegerl. "Climate change detection and attribution is first, and foremost, about understanding these observed changes. However, detection and attribution requires a model of why the climate may be changing to be able to draw conclusions from observations."


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gabriele Hegerl, Francis Zwiers. Use of models in detection and attribution of climate change. Wiley Interdisciplinary Reviews: Climate Change, 2011; DOI: 10.1002/wcc.121

Cite This Page:

Wiley-Blackwell. "How important are climate models for revealing the causes of environmental change?." ScienceDaily. ScienceDaily, 6 June 2011. <www.sciencedaily.com/releases/2011/06/110606112528.htm>.
Wiley-Blackwell. (2011, June 6). How important are climate models for revealing the causes of environmental change?. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/06/110606112528.htm
Wiley-Blackwell. "How important are climate models for revealing the causes of environmental change?." ScienceDaily. www.sciencedaily.com/releases/2011/06/110606112528.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins