Featured Research

from universities, journals, and other organizations

New bee viruses identified: Finding offers baseline to study colony collapse

Date:
June 8, 2011
Source:
University of California - San Francisco
Summary:
A 10-month study of healthy honey bees by California scientists has identified four new viruses that infect bees, while revealing that each of the viruses or bacteria previously linked to colony collapse is present in healthy hives as well.

Working in the lab, from left, are Michelle Flenniken, a postdoctoral scholar, Joseph DeRisi, PhD, a Howard Hughes Medical Institute investigator and professor of biochemistry and biophysics at UCSF, and Charles Runckel, a graduate student.
Credit: Lab photo by Cindy Chew

A 10-month study of healthy honey bees by University of California, San Francisco scientists has identified four new viruses that infect bees, while revealing that each of the viruses or bacteria previously linked to colony collapse is present in healthy hives as well.

The study followed 20 colonies in a commercial beekeeping operation of more than 70,000 hives as they were transported across the country pollinating crops, to answer one basic question: what viruses and bacteria exist in a normal colony throughout the year?

The results depict a distinct pattern of infections through the seasons and provide a normal baseline for researchers studying a colony -- the bee population within a hive -- that has collapsed. Findings are reported in the June 7 issue of the online journal PLoS ONE, published by the Public Library of Science.

The study tracked 27 unique viruses that afflict honey bees, including four that previously were unknown and others proposed as causes of the Colony Collapse Disorder that has been wiping out colonies for the past five years, according to senior author Joe DeRisi, PhD, a Howard Hughes Medical Institute investigator and professor of biochemistry and biophysics at UCSF.

"We brought a quantitative view of what real migrating populations look like in terms of disease," DeRisi said. "You can't begin to understand colony die-off without understanding what normal is."

Because the colonies in this study remained healthy despite these pathogens, the research supports the theory that colony collapse may be caused by factors working alone or in combination, said Michelle Flenniken, PhD, who jointly led the research.

"Clearly, there is more than just exposure involved," said Flenniken, a postdoctoral scholar in the laboratory of UCSF microbiologist Raul Andino, PhD. "We noticed that specific viruses dominated in some seasons, but also found that not all of the colonies tested positively for a virus at the same time, even after long-distance transport in close proximity."

Honey bees are critical to U.S. agriculture, which depends upon them to pollinate 130 different crops, representing more than $15 billion in crop value each year and roughly one-third of the human diet, according to the U.S. Department of Agriculture.

For the California almond crop to be successfully pollinated, DeRisi said, roughly half of the honeybees in the country -- about 1.3 million honeybee colonies -- must be in the Central Valley by the first week in February, when the trees begin to bloom. That need is echoed throughout the country, as different crops come due for pollination, resulting in semis traversing the nation for most of the year, each bearing hundreds of hives.

Since 2006, however, the bee industry has reported a mysterious phenomenon involving the sudden disappearance of most of a hive's worker bees, which leaves the queen and young bees without enough workers to support them. The disorder is one factor in the growing decline of U.S. honey bees -- an estimated 30 percent of the population is lost each year and some beekeeping operations cite 90 percent losses, the USDA reports.

Researchers nationwide have identified various possible causes of that collapse, mainly based on pathogens found in the affected hives. While this study did not identify the cause of colony collapse, it did offer a measurement of the normal levels of pathogens.

In addition to viruses, the research revealed six species each of bacteria and fungi, four types of mites and a parasitic fly called a phorid, which had not been seen in honey bees outside California. One of the new viruses, a strain of the Lake Sinai virus, turned out to be the primary element of the honey bee biome, or community of bacteria and viruses.

"Here's a virus that's the single most abundant component of the bee biome and no one knew it was there," DeRisi said, noting that hundreds of millions of these viral cells were found in each bee in otherwise healthy colonies at certain times of the year.

Flenniken jointly led the work with doctoral student Charles Runckel, in DeRisi's lab. The team used a broad range of molecular detection tools for the study, including gene sequencing and a custom-designed microarray to detect insect pathogens. The microarray was designed using the same principles used for detecting human viruses, which DeRisi pioneered with UCSF professor Donald Ganem, MD. It was built in the Center for Advanced Technology on the UCSF Mission Bay campus.

The research was primarily funded by Project Apis m., which includes members of the American Honey Producers Association, the American Beekeeping Federation, the National Honey Board, California State Beekeepers Association and California almond farmers. DeRisi is supported by the Howard Hughes Medical Institute. Flenniken's research was supported by the Hδagen Dazs post-doctoral fellowship in honey bee biology, through University of California, Davis. Other funding sources and data can be found in the full paper.

Co-authors include Andino, in the UCSF Department of Microbiology and Immunology; Juan C. Engel, in the UCSF Sandler Center for Drug Discovery and UCSF Department of Pathology; and J. Graham Ruby and Donald Ganem, in the Howard Hughes Medical Institute and UCSF departments of Biochemistry & Biophysics, and Microbiology.


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Journal Reference:

  1. Charles Runckel, Michelle L. Flenniken, Juan C. Engel, J. Graham Ruby, Donald Ganem, Raul Andino, Joseph L. DeRisi. Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia. PLoS ONE, 2011; 6 (6): e20656 DOI: 10.1371/journal.pone.0020656

Cite This Page:

University of California - San Francisco. "New bee viruses identified: Finding offers baseline to study colony collapse." ScienceDaily. ScienceDaily, 8 June 2011. <www.sciencedaily.com/releases/2011/06/110607171830.htm>.
University of California - San Francisco. (2011, June 8). New bee viruses identified: Finding offers baseline to study colony collapse. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/06/110607171830.htm
University of California - San Francisco. "New bee viruses identified: Finding offers baseline to study colony collapse." ScienceDaily. www.sciencedaily.com/releases/2011/06/110607171830.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) — Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) — With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) — Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins