Featured Research

from universities, journals, and other organizations

Researchers discover superatoms with magnetic shells

Date:
June 9, 2011
Source:
Virginia Commonwealth University
Summary:
A team of scientists has discovered a new class of 'superatoms' -- a stable cluster of atoms that can mimic different elements of the periodic table -- with unusual magnetic characteristics.

A proposed assembly of FeMg8 magnetic superatoms where the directions of magnetic moment is indicated by arrows.
Credit: Image courtesy of Victor Medel/VCU

A team of Virginia Commonwealth University scientists has discovered a new class of 'superatoms' -- a stable cluster of atoms that can mimic different elements of the periodic table -- with unusual magnetic characteristics.

The superatom contains magnetized magnesium atoms, an element traditionally considered as non-magnetic. The metallic character of magnesium along with infused magnetism may one day be used to create molecular electronic devices for the next generation of faster processors, larger memory storage and quantum computers.

In a study published online in the Early Edition of the Proceedings of the National Academy of Sciences, the team reports that the newly discovered cluster consisting of one iron and eight magnesium atoms acts like a tiny magnet that derives its magnetic strength from the iron and magnesium atoms. The combined unit matches the magnetic strength of a single iron atom while preferentially allowing electrons of specific spin orientation to be distributed throughout the cluster.

Through an elaborate series of theoretical studies, Shiv N. Khanna, Ph.D., a Commonwealth professor in the VCU Department of Physics, and his team examined the electronic and magnetic properties of clusters having one iron atom surrounded by multiple magnesium atoms. The team included instructor J. Ulises Reveles and Victor M. Medel, a post-doctoral associate, both from VCU; A. W. Castleman Jr., Ph.D., the Evan Pugh Professor of Chemistry and Physics, and Eberly Distinguished chair in Science in the Department of Chemistry at Penn State University; and Prasenjit Sen and Vikas Chauhan from the Harish-Chandra Research Institute in Allahabad, India.

"Our research opens a new way of infusing magnetic character in otherwise non-magnetic elements through controlled association with a single magnetic atom. An important objective was to discover what combination of atoms would lead to a species that is stable as we put multiple units together," said Khanna.

"The combination of magnetic and conducting attributes was also desirable. Magnesium is a good conductor of electricity and, hence, the superatom combines the benefit of magnetic character along with ease of conduction through its outer skin," he said.

The team found that when the cluster had eight magnesium atoms it acquired extra stability due to filled electronic shells that were far separated from the unfilled shells. An atom is in a stable configuration when its outermost shell is full and far separated from unfilled shells, as found in inert gas atoms. Khanna said that such phenomena commonly occur with paired electrons which are non-magnetic, but in this study the magnetic electronic shell showed stability.

According to Khanna, the new cluster had a magnetic moment of four Bohr magnetons, which is almost twice that of an iron atom in solid iron magnets. A magnetic moment is a measure of the magnetic strength of the cluster. Although the periodic table has more than one hundred elements, there are only nine elements that exhibit magnetic character in solid form.

"A combination such as the one we have created here can lead to significant developments in the area of "molecular electronics" where such devices allow the flow of electrons with particular spin orientation desired for applications such as quantum computers. These molecular devices are also expected to help make denser integrated devices, higher data processing, and other benefits," said Reveles.

Khanna and his team are conducting preliminary studies on the assemblies of the new superatoms and have made some promising observations that may have applications in spintronics. Spintronics is a process using electron spin to synthesize new devices for memory and data processing.

This research was supported by the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Victor M. Medel, Jose Ulises Reveles, Shiv N. Khanna, Vikas Chauhan, Prasenjit Sen, A. Welford Castleman. Hund's rule in superatoms with transition metal impurities. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1100129108

Cite This Page:

Virginia Commonwealth University. "Researchers discover superatoms with magnetic shells." ScienceDaily. ScienceDaily, 9 June 2011. <www.sciencedaily.com/releases/2011/06/110608153544.htm>.
Virginia Commonwealth University. (2011, June 9). Researchers discover superatoms with magnetic shells. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/06/110608153544.htm
Virginia Commonwealth University. "Researchers discover superatoms with magnetic shells." ScienceDaily. www.sciencedaily.com/releases/2011/06/110608153544.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins