Featured Research

from universities, journals, and other organizations

Glowing 'Cornell Dots': Potential cancer diagnostic tool set for human trials

Date:
June 13, 2011
Source:
Cornell University
Summary:
The US Food and Drug Administration (FDA) has approved the first clinical trial in humans of a new technology: Cornell Dots, brightly glowing nanoparticles that can light up cancer cells in PET-optical imaging.

The U.S. Food and Drug Administration (FDA) has approved the first clinical trial in humans of a new technology: Cornell Dots, brightly glowing nanoparticles that can light up cancer cells in PET-optical imaging.

A paper describing this new medical technology is published online in the Journal of Clinical Investigation (July 2011). This is a collaboration between Memorial Sloan-Kettering Cancer Center (MSKCC), Cornell University, and Hybrid Silica Technologies, a Cornell business start-up.

For the first time, scientists report a uniquely advanced and comprehensive characterization of Cornell Dots -- an ultra small, cancer-targeted, multimodal silica nanoparticle -- which has recently been approved as an "investigational new drug" (IND) by the FDA for a first-in-human clinical trial, says Michelle S. Bradbury, M.D., of the Memorial Sloan-Kettering Cancer Center and an assistant professor of radiology at Weill Cornell Medical College.

Cornell Dots are silica spheres less than 8 nanometers in diameter that enclose several dye molecules. (A nanometer is one-billionth of a meter, about the length of three atoms in a row.) The silica shell, essentially glass, is chemically inert and small enough to pass through the body and out in the urine. For clinical applications, the dots are coated with polyethylene glycol (PEG) so the body will not recognize them as foreign substances.

A guiding light within the body: To make the dots stick to tumor cells, organic molecules that bind to tumor surfaces or even specific locations within tumors can be attached to the PEG shell. When exposed to near-infrared light, the dots fluoresce much brighter than dye to serve as a beacon to identify the target cells. The technology, the researchers say, enables visualization during surgical treatment, showing invasive or metastatic spread to lymph nodes and distant organs, and can show the extent of treatment response.

Hooisweng Ow, a coauthor of the paper and once a graduate student working with Ulrich Wiesner, Cornell Professor of Materials Science and Engineering, developed first-generation Cornell dots in 2005. Together, Wiesner, Ow and Kenneth Wang, have co-founded the company Hybrid Silica Technologies (HST) to commercialize the invention. The combined team of MSKCC, Cornell and HST researchers is now in the process of forming a new commercial entity in New York City that will help transition the research into commercial products that will benefit cancer patient care.

"This is the first FDA IND approved inorganic particle platform of its class and properties that can be used for multiple clinical indications, two of which are explored: cancer targeting for diagnostics and future therapeutic diagnostics, as well as cancer disease staging and tumor burden assessment via lymph node mapping," says Bradbury.

The Cornell Dots were optimized for efficient renal clearance, allowing the body to pass them through the kidneys.

In addition, the scientists were able to perform real-time imaging of lymphatic drainage patterns and particle clearance rates, as well as sensitively detect nodal metastases. Nodal mapping is now being pursued under a new award of a BioAccelerate NYC Prize from the Partnership for New York City and the New York City Economic Development Corporation, which is expected to lead to another clinical trial in humans.

The lead authors of the paper are Miriam Benezra and Oula Penate-Medina, who are researchers at MSKCC. Bradbury and Wiesner are the senior authors.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Miriam Benezra, Oula Penate-Medina, Pat B. Zanzonico, David Schaer, Hooisweng Ow, Andrew Burns, Elisa DeStanchina, Valerie Longo, Erik Herz, Srikant Iyer, Jedd Wolchok, Steven M. Larson, Ulrich Wiesner, Michelle S. Bradbury. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI45600

Cite This Page:

Cornell University. "Glowing 'Cornell Dots': Potential cancer diagnostic tool set for human trials." ScienceDaily. ScienceDaily, 13 June 2011. <www.sciencedaily.com/releases/2011/06/110613121952.htm>.
Cornell University. (2011, June 13). Glowing 'Cornell Dots': Potential cancer diagnostic tool set for human trials. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2011/06/110613121952.htm
Cornell University. "Glowing 'Cornell Dots': Potential cancer diagnostic tool set for human trials." ScienceDaily. www.sciencedaily.com/releases/2011/06/110613121952.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins