Featured Research

from universities, journals, and other organizations

Vertebrate jaw design locked early: Study on initial diversification of jaws sheds light on early vertebrate feeding ecology

Date:
July 10, 2011
Source:
University of Bristol
Summary:
With the evolution of jaws some 420 million years ago, jawed animals diversified rapidly into a range of niches that remained stable for the following 80 million years, despite extinctions, habitat loss and competition, say researchers.

A sample of lower jaw diversity from 400 million years ago which includes from top to bottom: a giant 8-metre apex predator, a lungfish with a duck-like snout, a reef-dwelling representative of a totally extinct group of vertebrates, a fish-like relative of land animals, and a shark-like cousin of bony fishes. Jaws are not to scale and all are oriented so their front end is to the left.
Credit: Image by Simon Powell

More than 99 per cent of modern vertebrates (animals with a backbone, including humans) have jaws, yet 420 million years ago, jawless, toothless armour-plated fishes dominated the seas, lakes, and rivers. There were no vertebrates yet on land and the recently evolved jawed fishes were minor players in this alien world, some sporting unusual jaw shapes and structures that bear little physical resemblance to modern animals.

The researchers, led by Dr Philip Anderson of Bristol's School of Earth Sciences, applied concepts from physics and engineering to unravel the potential feeding functions of these unusual, early vertebrate jaw designs, and compared this data to patterns of diversity in both jawed and jawless fishes. While it has long been assumed that jawed fishes were better adapted, and therefore directly out-competed and replaced their jawless neighbours during this tumultuous time, this assertion has never been tested.

Dr Anderson said: "Surprisingly, our results indicate that long-held assumptions concerning the replacement of jawless fishes by newly evolved jawed forms are likely wrong. The variety of feeding mechanisms in early jawed animals appears to have had little to no affect on the diversity of jawless fishes, which shared ecological space with the jawed fishes for at least 30 million years before beginning to notably decline. When the jawless fishes do decline, we see no indication that their jawed cousins took up new functional roles, calling into question old ideas of ecological replacement.

"Furthermore, jawed vertebrates achieved a stable diversity in their feeding apparatus early in their evolution, and maintained this diversity in the face of major environmental changes during the Devonian period. Previous studies have suggested that the rise of major jawed vertebrate ecological diversity is tied to a documented oxygenation event 400 million years ago, but our results place the first burst of diversification of jawed vertebrates well before that.

"The groups which comprise the majority of modern fish diversity (ray-finned fishes), as well as our own fish ancestors (early tetrapods), are restricted to only a few types of jaws and feeding ecologies, while bizarre, extinct groups (such as placoderms and a surprising number of extinct lungfishes) show a wide range of feeding ecologies that at the time dominated the jawed vertebrate world. It is interesting to speculate what modern jawed vertebrates might have looked like if these diverse groups hadn't been severely diminished (extinct in the case of the placoderms) after the Devonian."

The research group hopes that these new methods for assessing the variation in functional systems (such as feeding apparatus), will be applied to the study of other extinct groups during times of dramatic transitions, such as mass extinctions and evolutionary radiations.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Philip S. L. Anderson, Matt Friedman, Martin D. Brazeau, Emily J. Rayfield. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature, 2011; DOI: 10.1038/nature10207

Cite This Page:

University of Bristol. "Vertebrate jaw design locked early: Study on initial diversification of jaws sheds light on early vertebrate feeding ecology." ScienceDaily. ScienceDaily, 10 July 2011. <www.sciencedaily.com/releases/2011/07/110706134130.htm>.
University of Bristol. (2011, July 10). Vertebrate jaw design locked early: Study on initial diversification of jaws sheds light on early vertebrate feeding ecology. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/07/110706134130.htm
University of Bristol. "Vertebrate jaw design locked early: Study on initial diversification of jaws sheds light on early vertebrate feeding ecology." ScienceDaily. www.sciencedaily.com/releases/2011/07/110706134130.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins