Featured Research

from universities, journals, and other organizations

A look back: Scientists raced to estimate oil flow from Deepwater Horizon Macondo well

Date:
July 6, 2011
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
The first two weeks of June 2010 were a blur for six Berkeley Lab scientists. As the world focused on the ongoing crisis in the Gulf of Mexico after the blowout of BP's Deepwater Horizon Macondo well, the scientists dropped everything to estimate how much oil was flowing from the mangled wellhead. Their research is recounted in a new article.

Among their findings, the Berkeley Lab team found that reservoir permeability had a strong influence on oil flow rate. This graphic tracks oil flow rate, in barrels per day, as a function of reservoir permeability and gas-oil ratio in a model in which the pressure at the blowout preventer is 4,400 pounds per square inch.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

The first two weeks of June 2010 were a blur for six scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). As the world focused on the ongoing crisis in the Gulf of Mexico after the blowout of BP's Deepwater Horizon Macondo well, the scientists dropped everything to estimate how much oil was flowing from the mangled wellhead.

Related Articles


The clock was ticking: Their work would help assess the environmental impact of the disaster, as well as develop ways to cap the well, which had been spewing unchecked since April 20.

They used some of the world's most sophisticated numerical modeling tools, developed at Berkeley Lab over the past two decades for applications ranging from geothermal energy production to environmental hydrology.

Working quickly and amid abundant uncertainties, they estimated that between 60,000 and 100,000 barrels of oil were flowing into the Gulf each day. Their calculations were in line with a final estimate derived two months later based on much more information.

Their research is recounted in an article published in this week's online early edition of the Proceedings of the National Academy of Sciences.

"We were able to harness Berkeley Lab's expertise in multiphase flow and computational tools to quickly take on this urgent problem," says Curt Oldenburg, a staff scientist in Berkeley Lab's Earth Sciences Division and lead author of the article. Also on the team were fellow Earth Sciences Division scientists Barry Freifeld, Karsten Pruess, Lehua Pan, Stefan Finsterle, and George Moridis.

The scientists were part of a group established by the National Incident Commander in May 2010 to estimate the oil flow rate from the wellhead. One component of this effort comprised scientists from five Department of Energy national laboratories, including Berkeley Lab.

The Berkeley Lab team first developed a simplified conceptual model of the system despite a lack of knowledge about the flow path from the reservoir into the well, reservoir permeability, and pressure in the blowout preventer. They then developed a coupled model of the reservoir and wellbore using a numerical program, called TOUGH2, which simulates fluid and heat flow in porous and fractured media.

Their simulations painted a range of flow rates, from a low of 60,000 barrels of oil per day to a high of 100,000 barrels of oil per day. Their initial estimates are in line with a final estimate established in August 2010 by the entire group and based on independent analyses and observations. It pegged the rate at 62,200 barrels of oil per day upon initial blowout in April, tapering to 52,700 barrels per day just before the well was capped in mid-July.

The Berkeley Lab team's modeling approach also allowed them to determine the role played by various uncertainties. For example, they found that the rate of oil flow greatly increased as the length of the well in contact with the reservoir increases.

Surprisingly, they also determined that oil flow rate is relatively insensitive to the pressure at the bottom of the blowout preventer. Common sense dictates that as pressure drops at the bottom of the blowout preventer, the oil flow rate increases. Instead, the scientists found that the lower the pressure, the more natural gas exsolves from the oil. Natural gas interferes with oil flow and counteracts the pressure that drives oil upward in the well.

The work was supported by the Department of Energy's National Energy Technology Laboratory and Assistant Secretary for Fossil Energy.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. M. Oldenburg, B. M. Freifeld, K. Pruess, L. Pan, S. Finsterle, G. J. Moridis. Science Applications in the Deepwater Horizon Oil Spill Special Feature: Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1105165108

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "A look back: Scientists raced to estimate oil flow from Deepwater Horizon Macondo well." ScienceDaily. ScienceDaily, 6 July 2011. <www.sciencedaily.com/releases/2011/07/110706144620.htm>.
DOE/Lawrence Berkeley National Laboratory. (2011, July 6). A look back: Scientists raced to estimate oil flow from Deepwater Horizon Macondo well. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2011/07/110706144620.htm
DOE/Lawrence Berkeley National Laboratory. "A look back: Scientists raced to estimate oil flow from Deepwater Horizon Macondo well." ScienceDaily. www.sciencedaily.com/releases/2011/07/110706144620.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Newsy (Jan. 28, 2015) Wrongly categorized as lizard fossils, snake fossils now show the reptile could have developed earlier than we thought — 70 million years earlier. Video provided by Newsy
Powered by NewsLook.com
Mobile Heat Tech the Google Maps of Energy Savings

Mobile Heat Tech the Google Maps of Energy Savings

Reuters - Innovations Video Online (Jan. 28, 2015) A Boston company has come up with a new and efficient way for homeowners to save money on energy costs, a timely innovation given the impact of this week&apos;s snow storms in the northeast US. The company is using a newly developed technology that can map heat signatures for entire cities in matter of days, generating data that could potentially produce billions in energy savings. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Time Lapse: Sculptures Created from 30 Tons of Snow

Time Lapse: Sculptures Created from 30 Tons of Snow

Rumble (Jan. 28, 2015) Students in North Finland use 30 tons of snow and one ton of ice to build a massive photography display and sculpture installation. Five days of work condensed into a one-minute time lapse! Video provided by Rumble
Powered by NewsLook.com
Scientists Hold Emergency Meeting to Save Endangered Rhinos

Scientists Hold Emergency Meeting to Save Endangered Rhinos

AFP (Jan. 28, 2015) Conservationists and scientists hold talks in Kenya to come up with a last ditch plan to save the northern white rhinoceros from extinction. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins