Featured Research

from universities, journals, and other organizations

A look back: Scientists raced to estimate oil flow from Deepwater Horizon Macondo well

Date:
July 6, 2011
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
The first two weeks of June 2010 were a blur for six Berkeley Lab scientists. As the world focused on the ongoing crisis in the Gulf of Mexico after the blowout of BP's Deepwater Horizon Macondo well, the scientists dropped everything to estimate how much oil was flowing from the mangled wellhead. Their research is recounted in a new article.

Among their findings, the Berkeley Lab team found that reservoir permeability had a strong influence on oil flow rate. This graphic tracks oil flow rate, in barrels per day, as a function of reservoir permeability and gas-oil ratio in a model in which the pressure at the blowout preventer is 4,400 pounds per square inch.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

The first two weeks of June 2010 were a blur for six scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). As the world focused on the ongoing crisis in the Gulf of Mexico after the blowout of BP's Deepwater Horizon Macondo well, the scientists dropped everything to estimate how much oil was flowing from the mangled wellhead.

The clock was ticking: Their work would help assess the environmental impact of the disaster, as well as develop ways to cap the well, which had been spewing unchecked since April 20.

They used some of the world's most sophisticated numerical modeling tools, developed at Berkeley Lab over the past two decades for applications ranging from geothermal energy production to environmental hydrology.

Working quickly and amid abundant uncertainties, they estimated that between 60,000 and 100,000 barrels of oil were flowing into the Gulf each day. Their calculations were in line with a final estimate derived two months later based on much more information.

Their research is recounted in an article published in this week's online early edition of the Proceedings of the National Academy of Sciences.

"We were able to harness Berkeley Lab's expertise in multiphase flow and computational tools to quickly take on this urgent problem," says Curt Oldenburg, a staff scientist in Berkeley Lab's Earth Sciences Division and lead author of the article. Also on the team were fellow Earth Sciences Division scientists Barry Freifeld, Karsten Pruess, Lehua Pan, Stefan Finsterle, and George Moridis.

The scientists were part of a group established by the National Incident Commander in May 2010 to estimate the oil flow rate from the wellhead. One component of this effort comprised scientists from five Department of Energy national laboratories, including Berkeley Lab.

The Berkeley Lab team first developed a simplified conceptual model of the system despite a lack of knowledge about the flow path from the reservoir into the well, reservoir permeability, and pressure in the blowout preventer. They then developed a coupled model of the reservoir and wellbore using a numerical program, called TOUGH2, which simulates fluid and heat flow in porous and fractured media.

Their simulations painted a range of flow rates, from a low of 60,000 barrels of oil per day to a high of 100,000 barrels of oil per day. Their initial estimates are in line with a final estimate established in August 2010 by the entire group and based on independent analyses and observations. It pegged the rate at 62,200 barrels of oil per day upon initial blowout in April, tapering to 52,700 barrels per day just before the well was capped in mid-July.

The Berkeley Lab team's modeling approach also allowed them to determine the role played by various uncertainties. For example, they found that the rate of oil flow greatly increased as the length of the well in contact with the reservoir increases.

Surprisingly, they also determined that oil flow rate is relatively insensitive to the pressure at the bottom of the blowout preventer. Common sense dictates that as pressure drops at the bottom of the blowout preventer, the oil flow rate increases. Instead, the scientists found that the lower the pressure, the more natural gas exsolves from the oil. Natural gas interferes with oil flow and counteracts the pressure that drives oil upward in the well.

The work was supported by the Department of Energy's National Energy Technology Laboratory and Assistant Secretary for Fossil Energy.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. M. Oldenburg, B. M. Freifeld, K. Pruess, L. Pan, S. Finsterle, G. J. Moridis. Science Applications in the Deepwater Horizon Oil Spill Special Feature: Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1105165108

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "A look back: Scientists raced to estimate oil flow from Deepwater Horizon Macondo well." ScienceDaily. ScienceDaily, 6 July 2011. <www.sciencedaily.com/releases/2011/07/110706144620.htm>.
DOE/Lawrence Berkeley National Laboratory. (2011, July 6). A look back: Scientists raced to estimate oil flow from Deepwater Horizon Macondo well. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2011/07/110706144620.htm
DOE/Lawrence Berkeley National Laboratory. "A look back: Scientists raced to estimate oil flow from Deepwater Horizon Macondo well." ScienceDaily. www.sciencedaily.com/releases/2011/07/110706144620.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Climate Rallies Spur Change?

Will Climate Rallies Spur Change?

Newsy (Sep. 21, 2014) Organizers of the People's Climate March and other rallies taking place in 166 countries hope to move U.N. officials to action ahead of their summit. Video provided by Newsy
Powered by NewsLook.com
UN's Ban: Climate Change 'defining Issue of Our Time'

UN's Ban: Climate Change 'defining Issue of Our Time'

Reuters - US Online Video (Sep. 21, 2014) United Nations Secretary-General Ban Ki-moon marches with hundreds of thousands of people in New York for the international day of action on climate change. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
Climate Change Rally Held in India Ahead of UN Summit

Climate Change Rally Held in India Ahead of UN Summit

AFP (Sep. 20, 2014) Some 125 world leaders are expected to commit to action on climate change at a UN summit Tuesday called to inject momentum in struggling efforts to tackle global warming. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins