Featured Research

from universities, journals, and other organizations

Climatic benefits from carbon sequestration are largely offset by increased nitrous oxide emissions, study finds

Date:
September 3, 2011
Source:
Max Planck Institute for Biogeochemistry
Summary:
Recent studies have shown that human nitrogen additions to terrestrial ecosystems increase the terrestrial carbon dioxide uptake from the atmosphere. A new study reports now that the climatic benefits from carbon sequestration are largely offset by increased nitrous oxide emissions, a further side-effect of human nitrogen additions to terrestrial ecosystems.

Recent studies have shown that human nitrogen additions to terrestrial ecosystems increase the terrestrial carbon dioxide uptake from the atmosphere. A new study published online in Nature Geoscience reports now that the climatic benefits from carbon sequestration are largely offset by increased nitrous oxide emissions, a further side-effect of human nitrogen additions to terrestrial ecosystems.

Related Articles


Human activities have more than doubled nitrogen inputs to the terrestrial biosphere since the 1860s. The two main causes for this are increased atmospheric nitrogen deposition from, for instance, fossil fuel burning, and the application of fertilizers in agriculture. Nitrogen is an essential nutrient for plant and microbial growth, and one of the key limiting nutrients in many natural ecosystems. The anthropogenic perturbations of the nitrogen cycle are known to affect the terrestrial sources and sinks of greenhouse gases such as carbon dioxide (CO2) and nitrous oxide (N2O). These changes are potentially very important as they may significantly affect the climate system, but their magnitude is still unknown.

"When added to nitrogen-limited ecosystems, it [nitrogen] can stimulate plant growth and/or suppress soil respiration, thereby leading to increased ecosystem carbon storage" explains Sönke Zaehle. However, there are also potentially negative consequences for adding nitrogen to ecosystems, as increasing nitrogen availability may enhance nitrogen losses from ecosystems, and eventually even have damaging effects on plant health. Particularly relevant for climate are elevated emissions of nitrous oxide, a long-lived greenhouse gas that is emitted from fertilised fields, as well as nitrogen-rich forest and grassland ecosystems.

Drawing on reconstructions of past and present anthropogenic nitrogen deposition and fertiliser applications, Sönke Zaehle and colleagues used a global computer model of the coupled terrestrial carbon and nitrogen cycles to better understand the consequences of this anthropogenic nitrogen perturbation for the climate system. Their results confirm that the anthropogenic nitrogen perturbation has profoundly affected terrestrial carbon dioxide and nitrous oxide fluxes. Human nitrogen additions are the principle cause for the increase in terrestrial nitrous oxide emission since 1960, and contribute to about one fifth of the current global net carbon uptake (1996-2005).

Sönke Zaehle and colleagues then determined the effect of anthropogenic nitrogen on the atmospheric concentrations of the greenhouse gases CO2 and N2O, and assessed the resulting consequences for present-day climate. The key finding is that the climatic effects of the anthropogenic nitrogen perturbation from both gases are very substantial but of opposite signs. The cooling effect due to enhanced carbon uptake of the terrestrial biosphere is more than compensated for by the warming effects from enhanced terrestrial N2O emissions.

However, "the fact that in our study the N2O effect appears stronger than the CO2 effect should not be over-interpreted" cautions Zaehle. Rather, the study highlights the relevance of anthropogenic nitrogen in the climate system and the need to consider the effects of carbon and nitrogen cycling jointly. "I hope that this study fosters further research to better understand the effects of human N on ecosystem dynamics through joint observational and modelling studies," Zaehle adds.


Story Source:

The above story is based on materials provided by Max Planck Institute for Biogeochemistry. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sönke Zaehle, Philippe Ciais, Andrew D. Friend, Vincent Prieur. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nature Geoscience, 2011; DOI: 10.1038/NGEO1207

Cite This Page:

Max Planck Institute for Biogeochemistry. "Climatic benefits from carbon sequestration are largely offset by increased nitrous oxide emissions, study finds." ScienceDaily. ScienceDaily, 3 September 2011. <www.sciencedaily.com/releases/2011/08/110801094301.htm>.
Max Planck Institute for Biogeochemistry. (2011, September 3). Climatic benefits from carbon sequestration are largely offset by increased nitrous oxide emissions, study finds. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2011/08/110801094301.htm
Max Planck Institute for Biogeochemistry. "Climatic benefits from carbon sequestration are largely offset by increased nitrous oxide emissions, study finds." ScienceDaily. www.sciencedaily.com/releases/2011/08/110801094301.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hikers Rescued After Fall from Oregon Mountain

Hikers Rescued After Fall from Oregon Mountain

AP (Feb. 1, 2015) — Two climbers who were hurt in a fall on Mount Hood are now being treated for their injuries. Rescue officials say they were airlifted off the mountain Saturday afternoon by an Oregon National Guard helicopter. (Feb. 2) Video provided by AP
Powered by NewsLook.com
NASA's SMAP Satellite Will Measure Wet Dirt From Space

NASA's SMAP Satellite Will Measure Wet Dirt From Space

Newsy (Feb. 1, 2015) — NASA&apos;s Soil Moisture Active Passive satellite mission will collect data to help forecast crop productivity, floods, droughts and wildfires. Video provided by Newsy
Powered by NewsLook.com
Raw: Rare Clouds Fill Grand Canyon

Raw: Rare Clouds Fill Grand Canyon

AP (Jan. 29, 2015) — For the second time in two months, a rare weather phenomenon filled the Grand Canyon with thick clouds just below the rim on Wednesday. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins