Featured Research

from universities, journals, and other organizations

Nature reaches for the high-hanging fruit: Tools of paleontology shed new light on diversity of natural plant chemicals

Date:
August 18, 2011
Source:
John Innes Centre
Summary:
In the first study of its kind, researchers have used tools of paleontology to gain new insights into the diversity of natural plant chemicals. They have shown that during the evolution of these compounds nature doesn't settle for the "low-hanging fruit" but favors rarer, harder to synthesize forms, giving pointers that will help in the search for potent new drugs.

Nautilus shell and a terpene.
Credit: Image courtesy of John Innes Centre

In the first study of its kind, researchers have used tools of paleontology to gain new insights into the diversity of natural plant chemicals. They have shown that during the evolution of these compounds nature doesn't settle for the 'low-hanging fruit' but favours rarer, harder to synthesise forms, giving pointers that will help in the search for potent new drugs.

Related Articles


Research on the fossil record has allowed the study of the evolution of the characteristic swirl shapes of Nautilus shells and shown that recurrent designs have formed to cope with changing sea levels. Why these forms occur, and not others, is an important evolutionary question, and to answer this, an analytical technique known as theoretical morphology has been developed. Theoretical morphology involves the mathematical simulation of forms such as the possible shape and dimensions of the nautilus shell. This allows a comparison of theoretical and actual distributions to study the evolutionary significance of biological forms, past and present.

Inspired by this, a group of scientists led by Dr Paul ÓMáille at the John Innes Centre and the Institute of Food Research, which are strategically funded by BBSRC, and Joseph P. Noel at the Salk Institute / Howard Hughes Medical Institute where the work began, applied the same theoretical morphology techniques to the study of terpenes, a group of natural products produced by plants.

Plants like pepper, tomato, and potato belong to the Solonanceae family, and they synthesize a signature set of terpenes for chemical defense against pathogens. Terpenes are essential for the ecological viability of the plant but also provide important compounds for human use including pharmaceuticals. Examples of well-known bioactive terpenes include taxol, which is used to treat certain cancers, and the anti-malarial drug artemisinin. Terpenes are useful as fragrances and flavourings, and their diverse uses have made them the subject of much research looking for novel compounds.

"The big question is how plants have evolved to make these chemicals," said Dr ÓMáille. "Is there a physical explanation, based on the chemical reaction, for why certain terpenes are favoured? Are plants simply making the easy to synthesize low hanging fruit of the terpene chemical world?"

To investigate these questions, Dr ÓMáille, Professor B. Andes Hess of Vanderbilt University and colleagues applied theoretical morphology to quantum mechanics calculations to compare theoretical and actual abundances of terpenes from solanaceaous plants. "We discovered a perplexing disparity between the predicted and natural abundance of terpenes. The common terpenes we see in nature are predicted to be quite rare, based on the chemistry. On the other hand, the terpene forms predicted to dominate are scarcely seen in nature." said Dr ÓMáille.

"Nature in fact reaches for the higher-hanging fruit, skewing chemical reactions to favour rarer chemicals. This suggests an adaptive significance to the distribution of chemicals produced by plants."

The distribution and diversity of plant terpenes in nature has yet to be exhaustively characterized, however this study provides new insights into the physical processes that underlie terpene biosynthesis in plants. This may reveal routes to rare or undiscovered natural products with potent bioactivities that could be used to help meet the ever-growing demand for new effective drugs.


Story Source:

The above story is based on materials provided by John Innes Centre. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Andes Hess, Lidia Smentek, Joseph P. Noel, Paul E. O’Maille. Physical Constraints on Sesquiterpene Diversity Arising from Cyclization of the Eudesm-5-yl Carbocation. Journal of the American Chemical Society, 2011; 133 (32): 12632 DOI: 10.1021/ja203342p

Cite This Page:

John Innes Centre. "Nature reaches for the high-hanging fruit: Tools of paleontology shed new light on diversity of natural plant chemicals." ScienceDaily. ScienceDaily, 18 August 2011. <www.sciencedaily.com/releases/2011/08/110816171739.htm>.
John Innes Centre. (2011, August 18). Nature reaches for the high-hanging fruit: Tools of paleontology shed new light on diversity of natural plant chemicals. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/08/110816171739.htm
John Innes Centre. "Nature reaches for the high-hanging fruit: Tools of paleontology shed new light on diversity of natural plant chemicals." ScienceDaily. www.sciencedaily.com/releases/2011/08/110816171739.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) — Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) — Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins