Featured Research

from universities, journals, and other organizations

Kinder, gentler cell capture method could aid medical research

Date:
August 20, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
A research team has come up with a potential solution to a two-pronged problem in medical research: How to capture cells on a particular spot on a surface using electric fields and keep them alive long enough to run experiments on them.

(A) As cells flow down the channel, they pass over the electrodes (vertical dark gray lines) until (B) the electrodes are activated and the cells are trapped and anchored. (C) The cells remain adhered even while being exposed continuously to a fluid flow. Scale bar 50 micrometers.
Credit: NIST

A research team at the National Institute of Standards and Technology (NIST) has come up with a potential solution to a two-pronged problem in medical research: How to capture cells on a particular spot on a surface using electric fields and keep them alive long enough to run experiments on them.

Their method, which involves innovations upon conventional cell-capture techniques, has already proved effective in creating arrays of human liver cells and mouse pluripotent cells -- which, similar to stem cells, can develop into more than one cell type.

"The technique could prove valuable for learning about how cells communicate and differentiate," says NIST chemist Darwin Reyes. "We think this method could provide an effective way to selectively induce cells to differentiate and watch their behavior as they develop."

Adherent cells need to be attached to a surface to survive, and one common way of getting them there is by using a technique called dielectrophoresis (DEP), which Reyes says is not necessarily the best for cells' health. A batch of cells is placed into a fluid medium that has low electrical conductivity -- sucrose in water, for example -- and then subjected to an electric field that attracts the cells to a nearby surface. But the DEP process requires the cells to spend between 20 and 30 minutes in the medium, which appears to cause problems when the cells are trying to attach to the surface.

"Cells typically die rather soon after that much time exposed to the sucrose, since they cannot attach to the surface," Reyes says. "It's tough to run useful experiments if you only have a short window of opportunity."

The team experimented with different materials before finding that they could use a layer of substance called polyelectrolyte that has its own positive electric charge, which attracts the cells quickly. Before depositing this material, they laid down a thin layer of natural protein called fibronectin that helps cells to survive once they stick. With this new hybrid surface, the cells need spend only about four minutes in the fluid before they are returned to a more nurturing medium that helps them grow and attach better. As a result, the cells can survive on the surface for a week or more.

Because of their success in creating arrays of neural cells, the team has recently started to pattern liver cells as well. Combining liver cells with this technique could be useful in toxicology studies, Reyes suggests. "The liver is made up of several types of cells that work together," he says. "Creating arrays of them with certain cells positioned in particular locations could help us study how each of them might contribute to the overall process of filtering out a toxin from the bloodstream."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Darwin R. Reyes, Jennifer S. Hong, John T. Elliott, Michael Gaitan. Hybrid Cell Adhesive Material for Instant Dielectrophoretic Cell Trapping and Long-Term Cell Function Assessment. Langmuir, 2011; 27 (16): 10027 DOI: 10.1021/la200762j

Cite This Page:

National Institute of Standards and Technology (NIST). "Kinder, gentler cell capture method could aid medical research." ScienceDaily. ScienceDaily, 20 August 2011. <www.sciencedaily.com/releases/2011/08/110817101944.htm>.
National Institute of Standards and Technology (NIST). (2011, August 20). Kinder, gentler cell capture method could aid medical research. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2011/08/110817101944.htm
National Institute of Standards and Technology (NIST). "Kinder, gentler cell capture method could aid medical research." ScienceDaily. www.sciencedaily.com/releases/2011/08/110817101944.htm (accessed April 25, 2014).

Share This



More Health & Medicine News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Companies Ramp Up Wellness to Lower Health Costs

Companies Ramp Up Wellness to Lower Health Costs

AP (Apr. 24, 2014) That little voice telling you to exercise, get in shape and get healthy is probably coming from your boss. More companies are beefing up wellness programs to try and cut down their health care costs. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
FDA Wants To Ban Sales Of E-Cigarettes To Minors

FDA Wants To Ban Sales Of E-Cigarettes To Minors

Newsy (Apr. 24, 2014) The Food and Drug Administration wants to crack down on the use of e-cigarettes, banning the sale of the product to minors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins