Featured Research

from universities, journals, and other organizations

Honeycomb carbon crystals possibly detected in space

Date:
August 18, 2011
Source:
NASA/Jet Propulsion Laboratory
Summary:
NASA's Spitzer Space Telescope has spotted the signature of flat carbon flakes, called graphene, in space. If confirmed, this would be the first-ever cosmic detection of the material -- which is arranged like chicken wire in flat sheets that are one atom thick.

An artist's concept of graphene, buckyballs and C70 superimposed on an image of the Helix planetary nebula, a puffed-out cloud of material expelled by a dying star. Image credit:
Credit: IAC/NASA/NOAO/ESA/STScI/NRAO

NASA's Spitzer Space Telescope has spotted the signature of flat carbon flakes, called graphene, in space. If confirmed, this would be the first-ever cosmic detection of the material -- which is arranged like chicken wire in flat sheets that are one atom thick.

Related Articles


Graphene was first synthesized in a lab in 2004, and subsequent research on its unique properties garnered the Nobel Prize in 2010. It's as strong as it is thin, and conducts electricity as well as copper. Some think it's the "material of the future," with applications in computers, screens on electrical devices, solar panels and more.

Graphene in space isn't going to result in any super-fast computers, but researchers are interested in learning more about how it is created. Understanding chemical reactions involving carbon in space may hold clues to how our own carbon-based selves and other life on Earth developed.

Spitzer identified signs of the graphene in two small galaxies outside of our own, called the Magellanic Clouds, specifically in the material shed by dying stars, called planetary nebulae. The infrared-sensing telescope also spotted a related molecule, called C70, in the same region -- marking the first detection of this chemical outside our galaxy.

C70 and graphene belong to the fullerene family, which includes molecules called "buckyballs," or C60. These carbon spheres contain 60 carbon atoms arranged like a soccer ball, and were named after their resemblance to the architectural domes of Buckminister Fuller. C70 molecules contain 70 carbon atoms and are longer in shape, more like a rugby ball.

Fullerenes have been found in meteorites carrying extraterrestrial gases, and water has been very recently encapsulated in buckyballs by using new laboratory techniques. These findings suggest fullerenes may have helped transport materials from space to Earth long ago, possibly helping to kick-start life.

Spitzer definitively detected both buckyballs and C70 in space for the first time in July 2010. It later spotted buckyballs -- equivalent in mass to 15 full moons -- in the Small Magellanic Cloud. These latter results demonstrated that, contrary to what was previously believed, fullerenes and other complex molecules could form in hydrogen-rich environments.

According to astronomers, the graphene, buckyballs and C70 might be forming when shock waves generated by dying stars break apart hydrogen-containing carbon grains.

The team that performed the Spitzer research is led by Domingo Aníbal García-Hernández of the Instituto de Astrofísica de Canarias in Spain. The results appear in the Astrophysical Journal Letters. García-Hernández is also the lead author of the study that used Spitzer to detect heaps of buckyballs in the Small Magellanic Cloud.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. For more information about Spitzer, visit http://spitzer.caltech.edu/ and http://www.nasa.gov/spitzer .


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. A. García-Hernández, S. Iglesias-Groth, J. A. Acosta-Pulido, A. Manchado, P. García-Lario, L. Stanghellini, E. Villaver, R. A. Shaw, F. Cataldo. The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae. The Astrophysical Journal, 2011; 737 (2): L30 DOI: 10.1088/2041-8205/737/2/L30

Cite This Page:

NASA/Jet Propulsion Laboratory. "Honeycomb carbon crystals possibly detected in space." ScienceDaily. ScienceDaily, 18 August 2011. <www.sciencedaily.com/releases/2011/08/110817121453.htm>.
NASA/Jet Propulsion Laboratory. (2011, August 18). Honeycomb carbon crystals possibly detected in space. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/08/110817121453.htm
NASA/Jet Propulsion Laboratory. "Honeycomb carbon crystals possibly detected in space." ScienceDaily. www.sciencedaily.com/releases/2011/08/110817121453.htm (accessed October 25, 2014).

Share This



More Space & Time News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) — China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) — The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins