Featured Research

from universities, journals, and other organizations

Tougher, lighter wind turbine blade developed: Polyurethane reinforced with carbon nanotubes

Date:
October 9, 2011
Source:
Case Western Reserve University
Summary:
Efforts to build larger wind turbines able to capture more energy from the air are stymied by the weight of blades. Researchers have now built a prototype blade that is substantially lighter and eight times tougher and more durable than currently used blade materials.

Efforts to build larger wind turbines able to capture more energy from the air are stymied by the weight of blades. A Case Western Reserve University researcher has built a prototype blade that is substantially lighter and eight times tougher and more durable than currently used blade materials.

Related Articles


Marcio Loos, a post-doctoral researcher in the Department of Macromolecular Science and Engineering, works with colleagues at Case Western Reserve, and investigators from Bayer MaterialScience in Pittsburgh, and Molded Fiber Glass Co. in Ashtabula, Ohio, comparing the properties of new materials with the current standards used in blade manufacturing.

On his own, Loos went to the lab on weekends and built the world's first polyurethane blade reinforced with carbon nanotubes. He wanted to be sure the composite that was scoring best on preliminary tests could be molded into the right shape and maintain properties.

Using a small commercial blade as a template, he manufactured a 29-inch blade that is substantially lighter, more rigid and tougher.

"The idea behind all this is the need to develop stronger and lighter materials which will enable manufacturing of blades for larger rotors," Loos said.

That's an industry goal.

In order to achieve the expansion expected in the market for wind energy, turbines need a bigger share of the wind. But, simply building larger blades isn't a smart answer.

The heavier the blades, the more wind is needed to turn the rotor. That means less energy is captured. And the more the blades flex in the wind, the more they lose the optimal shape for catching moving air, so, even less energy is captured.

Lighter, stiffer blades enable maximum energy and production.

"Results of mechanical testing for the carbon nanotube reinforced polyurethane show that this material outperforms the currently used resins for wind blades applications," said Ica Manas-Zloczower, professor of macromolecular science and engineering and associate dean in the Case School of Engineering.

Loos is working in the Manas-Zloczower lab where she and Chemical Engineering Professor Donald L. Feke, a vice provost at the university, serve as advisors on the project.

In a comparison of reinforcing materials, the researchers found carbon nanotubes are lighter per unit of volume than carbon fiber and aluminum and had more than 5 times the tensile strength of carbon fiber and more than 60 times that of aluminum.

Fatigue testing showed the reinforced polyurethane composite lasts about eight times longer than epoxy reinforced with fiberglass. The new material was also about eight times tougher in delamination fracture tests.

The performance in each test was even better when compared to vinyl ester reinforced with fiberglass, another material used to make blades.

The new composite also has shown fracture growth rates at a fraction of the rates found for traditional epoxy and vinyl ester composites.

Loos and the rest of the team are continuing to test for the optimal conditions for the stable dispersion of nanotubes, the best distribution within the polyurethane and methods to make that happen.

The functional prototype blades built by Loos, which were used to turn a 400-watt turbine, will be stored in our laboratory, Manas-Zloczower said. "They will be used to emphasize the significant potential of carbon nanotube reinforced polyurethane systems for use in the next generation of wind turbine blades."

The research is funded by a U.S. Department of Energy stimulus grant and Bayer MaterialScience.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Cite This Page:

Case Western Reserve University. "Tougher, lighter wind turbine blade developed: Polyurethane reinforced with carbon nanotubes." ScienceDaily. ScienceDaily, 9 October 2011. <www.sciencedaily.com/releases/2011/08/110830102159.htm>.
Case Western Reserve University. (2011, October 9). Tougher, lighter wind turbine blade developed: Polyurethane reinforced with carbon nanotubes. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2011/08/110830102159.htm
Case Western Reserve University. "Tougher, lighter wind turbine blade developed: Polyurethane reinforced with carbon nanotubes." ScienceDaily. www.sciencedaily.com/releases/2011/08/110830102159.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins