Featured Research

from universities, journals, and other organizations

An 'unconventional' path to correcting cystic fibrosis

Date:
September 5, 2011
Source:
Cell Press
Summary:
Researchers have identified an unconventional path that may correct the defect underlying cystic fibrosis, according to a new study. This new treatment dramatically extends the lives of mice carrying the disease-associated mutation.

Researchers have identified an unconventional path that may correct the defect underlying cystic fibrosis, according to a report in the September 2nd issue of the journal Cell, a Cell Press publication. This new treatment dramatically extends the lives of mice carrying the disease-associated mutation.

Cystic Fibrosis is caused by a mutation in a gene responsible for the transport of ions across cell membranes. This gene encodes a protein channel, called the cystic fibrosis transmembrane conductance regulator or CFTR, that is normally found on the surfaces of cells lining the airway and intestine. In patients with the disease, the channels don't make it from inside cells to their surfaces along the standard path. As a result ions and fluids fail to move in and out of cells as they should, causing mucus build-up and chronic lung infections.

The new study identifies an unexpected way to send the mutant proteins to the surface where they can restore ion transport. A protein normally localized to membranes inside cells, called GRASP65, is co-opted to escort mutant CFTR channels to the cell surface by following a "detour" route.

"Many have searched for the so-called CFTR correctors that can aid the surface expression of mutant CFTR through conventional trafficking," said Min Goo Lee, senior author of this study. Some molecules have shown promise in the laboratory, but none have led to the development of commercially available therapies so far.

"In this study, we discovered that CFTR surface trafficking can be rescued by an alternative route that former investigators had not expected."

Mice carrying the cystic fibrosis-linked mutation typically live for less than 3 months. In those that produce higher levels of GRASP65, only 1 out of 20 of the CFTR-mutant mice died in those first 3 months. Importantly, the transport of ions by CFTR in the animals' intestinal lining was also restored to more than 60 percent of the level seen in normal, healthy mice.

The findings may ultimately have real treatment implications for those with cystic fibrosis or other genetic diseases stemming from problems with the transport of proteins that are folded incorrectly.

"We made a small step in understanding cell biology," Lee says. "We hope this could turn out to be a giant leap in future clinical medicine, especially for treating human genetic diseases."

In the U.S., cystic fibrosis is the most common deadly inherited disorder, according to PubMed Health. One in 29 Caucasian Americans carry the cystic fibrosis mutation, and those with two copies of the mutant gene will develop the disease.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Heon Yung Gee, Shin Hye Noh, Bor Luen Tang, Kyung Hwan Kim, Min Goo Lee. Rescue of ΔF508-CFTR Trafficking via a GRASP-Dependent Unconventional Secretion Pathway. Cell, 2011; 146 (5): 746-760 DOI: 10.1016/j.cell.2011.07.021

Cite This Page:

Cell Press. "An 'unconventional' path to correcting cystic fibrosis." ScienceDaily. ScienceDaily, 5 September 2011. <www.sciencedaily.com/releases/2011/09/110901134638.htm>.
Cell Press. (2011, September 5). An 'unconventional' path to correcting cystic fibrosis. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/09/110901134638.htm
Cell Press. "An 'unconventional' path to correcting cystic fibrosis." ScienceDaily. www.sciencedaily.com/releases/2011/09/110901134638.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Might Not Be Out Of Control In U.S., But Coverage Is

Ebola Might Not Be Out Of Control In U.S., But Coverage Is

Newsy (Oct. 2, 2014) Coverage of the lone Ebola patient discovered in Texas has U.S. media in a frenzy — but does the coverage match the reality? Video provided by Newsy
Powered by NewsLook.com
US Hunts Contacts of Ebola Patient, Including Children

US Hunts Contacts of Ebola Patient, Including Children

AFP (Oct. 2, 2014) Health officials in Texas on Wednesday scoured the Dallas area for people, including schoolchildren, who came in contact with a Liberian man who was diagnosed with Ebola in the United States. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Study Says Losing Sense Of Smell Can Indicate Death

Study Says Losing Sense Of Smell Can Indicate Death

Newsy (Oct. 2, 2014) Researchers found elderly adults with a poor sense of smell are more likely to die within five years. Video provided by Newsy
Powered by NewsLook.com
Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins