Featured Research

from universities, journals, and other organizations

Improving the resistance of maize by using bacteria

Date:
September 8, 2011
Source:
NCCR Plant Survival
Summary:
Maize plants that have been inoculated with bacteria naturally present in the soil show improved resistance against a pathogenic fungus and a considerable reduction in the number of attacks by a herbivorous moth. It is the first time that such a double effect has been shown in maize.

Maize plants that have been inoculated with bacteria naturally present in the soil show improved resistance against a pathogenic fungus and a considerable reduction in the number of attacks by a herbivorous moth. It is the first time that such a double effect has been shown in maize. The results of these studies carried out at the University of Neuchβtel under the supervision of Brigitte Mauch-Mani have been presented at the PR-IR 11 congress on plant defences.

A pathogenic fungus responsible for a disease called anthracnose has been causing serious damage to cereal crops on the North American continent, especially during the 1970's. "Colletotrichum graminicola is not limited to crops. It also affects golf courses, parks and private gardens where the grass changes to an unappealing brown colour, states Dirk Balmer, a PhD student in the molecular and cellular biology laboratory and co-author of the research. Luckily, the problem in Europe is not as serious since the cultivated varieties on this continent are naturally less sensitive to this disease."

In order to test a way to improve the resistance of maize to this pathogen, Chantal Planchamp, the other principal co-author of this study and PhD student in the same group, inoculated the plants with a soil bacterium of the genus Pseudomonas. This microorganism is known to easily colonise maize seeds and roots without damaging the plant. The bacterium acts somewhat like a vaccine by halting the pathogenic fungus's proliferation. Furthermore, it seems that the presence of the bacterium helps to limit the herbivorous moth's attacks.

The origin of this double action protection of maize still needs to be clarified, particularly through the analysis of the mechanisms activated by the plant, such as the production of hormones or specific metabolites.

In parallel to the experiments of Chantal Planchamp, Dirk Balmer wanted to know how the plant reacts to a C. Graminicola infection. It turned out that an infection at the root zone triggers important resistance reactions that spread all the way to the leaves. An inverse effect (leaf to root) has also been shown, but not as pronounced. "It's the first time that a study shows the effects of a systemic resistance caused by this infection. This was possible because the fungus attacks both the roots and leaves of maize," adds Dirk Balmer.


Story Source:

The above story is based on materials provided by NCCR Plant Survival. Note: Materials may be edited for content and length.


Cite This Page:

NCCR Plant Survival. "Improving the resistance of maize by using bacteria." ScienceDaily. ScienceDaily, 8 September 2011. <www.sciencedaily.com/releases/2011/09/110908080956.htm>.
NCCR Plant Survival. (2011, September 8). Improving the resistance of maize by using bacteria. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/09/110908080956.htm
NCCR Plant Survival. "Improving the resistance of maize by using bacteria." ScienceDaily. www.sciencedaily.com/releases/2011/09/110908080956.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Ramen Health Risks: The Dark Side of the Noodle

Ramen Health Risks: The Dark Side of the Noodle

AP (Aug. 21, 2014) — South Koreans eat more instant ramen noodles per capita than anywhere else in the world. But American researchers say eating too much may increase the risk of diabetes, heart disease and stroke. (Aug. 21) Video provided by AP
Powered by NewsLook.com
California Drought Stings Honeybees, Beekeepers

California Drought Stings Honeybees, Beekeepers

AP (Aug. 21, 2014) — California's record drought is hurting honey supplies and raising prices for consumers. The lack of rainfall means fewer crops and wildflowers that provide the nectar bees need to make honey. (Aug. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins