Featured Research

from universities, journals, and other organizations

Mitosis: New techniques expose surprises in cell division

Date:
September 12, 2011
Source:
California Institute of Technology
Summary:
Researchers have obtained the first high-resolution, three-dimensional images of a cell with a nucleus undergoing cell division. The observations, made using a powerful imaging technique in combination with a new method for slicing cell samples, indicate that one of the characteristic steps of mitosis is significantly different in some cells.

A "regular" spindle configuration (top) with all chromosomes attached to microtubules, and the O. tauri spindle (bottom) with chromosomes bundled together and attached to just two short, incomplete microtubules.
Credit: Caltech

Researchers at the California Institute of Technology (Caltech) have obtained the first high-resolution, three-dimensional images of a cell with a nucleus undergoing cell division. The observations, made using a powerful imaging technique in combination with a new method for slicing cell samples, indicate that one of the characteristic steps of mitosis is significantly different in some cells.

Related Articles


During mitosis, two sets of chromosomes get paired up at the center of the cell's nucleus. Then hollow rods of proteins called microtubules, which make up a cellular structure called the spindle apparatus, grab on to the chromosomes and essentially pull each set away from the center in opposite directions, so that both daughter cells end up with a full copy of the genetic material. Typically, in the cells of plants, fungi, and many animals, one or more microtubules attach to each chromosome before the spindle will separate the sets of chromosomes from each another.

But when the Caltech researchers observed this step using their new technique, what they saw was not business as usual for a dividing cell. "We've found the first clear example of a cell where there are fewer microtubules used than chromosomes," says Grant Jensen, professor of biology at Caltech and a Howard Hughes Medical Institute investigator. The group's findings appear online in Current Biology and will be published in the September 27 issue of the journal.

Jensen's group is one of just a few in the world that uses electron cryotomography (ECT) to image biological samples. Unlike traditional electron microscopy -- for which samples must be dehydrated, embedded in plastic, sectioned, and stained -- ECT involves plunge-freezing samples so quickly that they become trapped in a near-native state within a layer of transparent, glasslike ice. A microscope can then capture high-resolution images of the sample as it is rotated, usually one degree at a time.

One limitation of ECT is that samples cannot be thicker than 500 nanometers -- otherwise the electron beam cannot penetrate the sample sufficiently. Therefore, ECT studies have focused on small bacteria and viruses. But Jensen's group wanted to extend the technique to observe eukaryotic cells, which are typically much bigger. So they located the smallest known eukaryote, Ostreococcus tauri, and imaged it with ECT.

The next step was to observe the important process of cell division in a eukaryote. But even tiny O. tauri exceeds the 500-nanometer limit when it is undergoing mitosis, since cells are essentially twice as big as usual when they're dividing. So the researchers needed a way to cut the frozen sample into slices, a process called cryosectioning.

"In the past when people have tried this, the sections have come off sort of like snowflakes -- the material has gotten crushed," Jensen says. But Caltech electron microscopy scientist Mark Ladinsky has developed a highly successful new technique for cryosectioning samples. He slices them at about -150C, using a special machine and a diamond knife. Then he carefully removes the slices from the knife using a micromanipulator. The technique has enabled the researchers to look at slices through dividing cells in a near-native, hydrated state.

With the new imaging and sectioning techniques working together, a former postdoctoral scholar in Jensen's lab, Lu Gan, was able to make detailed observations of mitosis in O. tauri, a cell with 20 chromosomes. Contrary to expectations, Gan observed nowhere near 40 microtubules attached to the two sets of chromosomes during mitosis; instead, he found only about 10 small, incomplete microtubules. This suggests that the chromosomes may link together to form some kind of a bundle that can then be segregated all at once by a smaller number of microtubules.

Previous studies, dating back to the 1970s, claimed to have found unicellular eukaryotic cells with fewer microtubules than chromosomes. However, those cells were chemically fixed and stained -- a process that can easily damage the cells -- casting doubt on the claims. But with their new imaging and sectioning techniques, the Caltech researchers feel confident that they have indeed imaged such a cell.

Their success bodes well for future studies. "Our work with O. tauri shows that we might be able to get high-resolution, three-dimensional images of other eukaryotic cells, which are much larger than bacteria," Jensen says. "We've even moved on to try to image some human cells using the same process."

The group's report, "Organization of the Smallest Eukaryotic Spindle," was supported in part by a grant from the National Institutes of Health and a fellowship from the Damon Runyon Cancer Research Foundation. The ECT imaging was made possible by a gift from the Gordon and Betty Moore Foundation.


Story Source:

The above story is based on materials provided by California Institute of Technology. The original article was written by Kimm Fesenmaier. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lu Gan, Mark S. Ladinsky, Grant J. Jensen. Organization of the Smallest Eukaryotic Spindle. Current Biology, 08 September 2011 DOI: 10.1016/j.cub.2011.08.021

Cite This Page:

California Institute of Technology. "Mitosis: New techniques expose surprises in cell division." ScienceDaily. ScienceDaily, 12 September 2011. <www.sciencedaily.com/releases/2011/09/110908124152.htm>.
California Institute of Technology. (2011, September 12). Mitosis: New techniques expose surprises in cell division. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/09/110908124152.htm
California Institute of Technology. "Mitosis: New techniques expose surprises in cell division." ScienceDaily. www.sciencedaily.com/releases/2011/09/110908124152.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins