Featured Research

from universities, journals, and other organizations

Gamers succeed where scientists fail: Molecular structure of retrovirus enzyme solved, doors open to new AIDS drug design

Date:
September 19, 2011
Source:
University of Washington
Summary:
Online gamers have solved the structure of a retrovirus enzyme whose configuration had stumped scientists for over a decade. This is the first instance that researchers are aware of in which gamers solved a longstanding scientific problem. The discovery was achieved through Foldit, which allows players to collaborate and compete in predicting protein molecule structures. Foldit is an example of engaging the public in scientific discovery by using games to solve hard problems that can't be solved by either people or computers alone.

The "unsolved monkey virus protein" Foldit puzzle, highlighting the tool used by online gamers.
Credit: University of Washington

Gamers have solved the structure of a retrovirus enzyme whose configuration had stumped scientists for more than a decade. The gamers achieved their discovery by playing Foldit, an online game that allows players to collaborate and compete in predicting the structure of protein molecules.

After scientists repeatedly failed to piece together the structure of a protein-cutting enzyme from an AIDS-like virus, they called in the Foldit players. The scientists challenged the gamers to produce an accurate model of the enzyme. They did it in only three weeks.

This class of enzymes, called retroviral proteases, has a critical role in how the AIDS virus matures and proliferates. Intensive research is under way to try to find anti-AIDS drugs that can block these enzymes, but efforts were hampered by not knowing exactly what the retroviral protease molecule looks like.

"We wanted to see if human intuition could succeed where automated methods had failed," said Dr. Firas Khatib of the University of Washington Department of Biochemistry. Khatib is a researcher in the protein structure lab of Dr. David Baker, professor of biochemistry.

Remarkably, the gamers generated models good enough for the researchers to refine and, within a few days, determine the enzyme's structure. Equally amazing, surfaces on the molecule stood out as likely targets for drugs to de-active the enzyme.

"These features provide exciting opportunities for the design of retroviral drugs, including AIDS drugs," wrote the authors of a paper appearing Sept. 18 in Nature Structural & Molecular Biology. The scientists and gamers are listed as co-authors.

This is the first instance that the researchers are aware of in which gamers solved a longstanding scientific problem.

Fold-it was created by computer scientists at the University of Washington Center for Game Science in collaboration with the Baker lab.

"The focus of the UW Center for Game Sciences," said director Dr. Zoran Popovic, associate professor of computer science and engineering, "is to solve hard problems in science and education that currently cannot be solved by either people or computers alone."

The solution of the virus enzyme structure, the researchers said, "indicates the power of online computer games to channel human intuition and three-dimensional pattern matching skills to solve challenging scientific problems."

With names like Foldit Contenders Group and Foldit Void Crushers Group, the gamer teams were fired up for the task of real-world molecule modeling problems. The online protein folding game captivates thousands of avid players worldwide and engages the general public in scientific discovery.

Players come from all walks of life. The game taps into their 3-D spatial abilities to rotate chains of amino acids in cyberspace. New players start at the basic level, "One Small Clash," proceed to "Swing it Around" and step ahead until reaching "Rubber Band Reversal."

Direct manipulation tools, as well as assistance from a computer program called Rosetta, encourage participants to configure graphics into a workable protein model. Teams send in their answers, and UW researchers constantly improve the design of the game and its puzzles by analyzing the players' problem-solving strategies.

Figuring out the shape and misshape of proteins contributes to research on causes of and cures for cancer, Alzheimer's, immune deficiencies and a host of other disorders, as well as to environmental work on biofuels.

Referring to this week's report of the online gamers' molecule solution opening new avenues for anti-viral drug research, Carter Kimsey, program director, National Science Foundation Division of Biological Infrastructure, observed, "After this discovery, young people might not mind doing their science homework. This is an innovative approach to getting humans and computer models to 'learn from each other' in real-time."

The researchers noted that much attention has been given to the possibilities of crowd-sourcing and game playing in scientific discovery. Their results indicate the potential for integrating online video games into real-world science.

Dr. Seth Cooper, of the UW Department of Computing Science and Engineering, is a co-creator of Foldit and its lead designer and developer. He studies human-computer exploration methods and the co-evolution of games and players.

"People have spatial reasoning skills, something computers are not yet good at," Cooper said. "Games provide a framework for bringing together the strengths of computers and humans. The results in this week's paper show that gaming, science and computation can be combined to make advances that were not possible before."

Games like Foldit are evolving. To piece together the retrovirus enzyme structure, Cooper said, gamers used a new Alignment Tool for the first time to copy parts of know molecules and test their fit in an incomplete model.

"The ingenuity of game players," Khatib said, "is a formidable force that, if properly directed, can be used to solve a wide range of scientific problems.

According to Popovic, "Foldit shows that a game can turn novices into domain experts capable of producing first-class scientific discoveries. We are currently applying the same approach to change the way math and science are taught in school."

The other scientists involved in this project were Frank DiMaio and James Thompson, both of the UW Department of Biochemistry, and Maciej Kazmierczyk, Miroslaw Gilski, Szymon Krzywda, Helena Zabranska, and Mariusz Jaskolski, all of the Faculty of Chemistry of A. Mickiewicz University in Poznan, Poland, and Iva Pichova of the Academy of Sciences of the Czech Republic, Prague.

The project was supported by the UW Center for Game Science, the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation, the Howard Hughes Medical Institute, and Microsoft Corp.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Leila Gray, UW Health Sciences/UW Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Firas Khatib, Frank DiMaio, Seth Cooper, Maciej Kazmierczyk, Miroslaw Gilski, Szymon Krzywda, Helena Zabranska, Iva Pichova, James Thompson, Zoran Popović, Mariusz Jaskolski, David Baker. Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nature Structural & Molecular Biology, 2011; DOI: 10.1038/nsmb.2119

Cite This Page:

University of Washington. "Gamers succeed where scientists fail: Molecular structure of retrovirus enzyme solved, doors open to new AIDS drug design." ScienceDaily. ScienceDaily, 19 September 2011. <www.sciencedaily.com/releases/2011/09/110918144955.htm>.
University of Washington. (2011, September 19). Gamers succeed where scientists fail: Molecular structure of retrovirus enzyme solved, doors open to new AIDS drug design. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2011/09/110918144955.htm
University of Washington. "Gamers succeed where scientists fail: Molecular structure of retrovirus enzyme solved, doors open to new AIDS drug design." ScienceDaily. www.sciencedaily.com/releases/2011/09/110918144955.htm (accessed October 1, 2014).

Share This



More Computers & Math News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Goes For Familiarity Over Novelty In Windows 10

Microsoft Goes For Familiarity Over Novelty In Windows 10

Newsy (Sep. 30, 2014) At a special event in San Francisco, Microsoft introduced its latest operating system, Windows 10, which combines key features from earlier versions. Video provided by Newsy
Powered by NewsLook.com
French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Apple Releases 'Shellshock' Fix Despite Few Affected Users

Apple Releases 'Shellshock' Fix Despite Few Affected Users

Newsy (Sep. 29, 2014) Apple released a security fix for the "Shellshock" vulnerability Monday, though it says only "advanced UNIX users" of OS X need it. Video provided by Newsy
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins