Featured Research

from universities, journals, and other organizations

Like fish on waves, electrons go surfing

Date:
September 28, 2011
Source:
Ruhr-Universitaet-Bochum
Summary:
Physicists have succeeded in taking a decisive step towards the development of more powerful computers. They were able to define two little quantum dots (QDs), occupied with electrons, in a semiconductor and to select a single electron from one of them using a sound wave, and then to transport it to the neighboring QD.

3-D diagram: the electrons are yellow; the waves in the crystal are presented in red.
Credit: Image courtesy of Ruhr-Universitaet-Bochum

Physicists at the RUB, working in collaboration with researchers from Grenoble and Tokyo, have succeeded in taking a decisive step towards the development of more powerful computers. They were able to define two little quantum dots (QDs), occupied with electrons, in a semiconductor and to select a single electron from one of them using a sound wave, and then to transport it to the neighbouring QD.

Related Articles


A single electron "surfs" thus from one quantum dot to the next like a fish on a wave. Such manipulation of a single electron will in the future also enable the combination of considerably more complex quantum bits instead of classical bits ("0" and "1" states). The researchers have reported their results in  the journal Nature.

Semiconductor physics: a fisherman's dream

Electrons can move as freely as fish in water in electric conductors (metals) and semiconductors such as silicon (Si) or gallium arsenide (GaAs), albeit not "swimming" of their own but moving owing to differences in voltage. Inside a metal, they are present as a huge number of fish that fill nearly the entire volume of water. In semiconductors, this "fish density" is not as high and so the distance between the electrons (fish) is much larger. The electrons can be concentrated in a thin layer near the surface by the application of an external voltage. The new method that the international team of researchers has developed now fulfils this "fisherman's dream" for semiconductor physicists. The electron "fish" are all in one layer close to the surface and easily, individually accessible from the surface.

Fishing one from the quantum dot

Prof. Andreas Wieck, physicist at the RUB, points out that there are, however no, "big fish," all electrons being similar and even always identical, undistinguishable objects. The method that the researchers from Germany, France and Japan used, nevertheless enables the "emission" of individual electrons from the QD, moving them over a specific distance and then detecting them at the neighbouring QD. A distance of four micrometres (μm) was used in the experiment -- this is twenty times larger than a highly integrated transistor. Targeted transport of individual electrons is possible in the following way: First, a QD is defined between the tips of four electrodes to form this zero-dimensional object, containing some hundred electrons. The scientists subsequently send a sound wave along the semiconductor surface using interdigital (like two combs fitted together without touching each other) electrodes to which they apply a radio frequency voltage. This method functions in the opposite way as the electrical discharge of a piezo ignition system in which a crystal is deformed to attain a voltage. The researchers applied voltage to the crystal and thus deform it, and the alternating voltage leads to the formation of a sound wave.

The fish surfs on the wave

In a sample, this wave moves, for example, from left to right through the quantum dot at the velocity of sound -- inside the crystal at three kilometres per second. Its height is adjusted so that it extracts exactly one "fish" from it. The latter subsequently surfs on the wave in a one-dimensional channel. The "fish" arrives at the neighbouring quantum dot 4 μm to the right thereof. The researchers were able to attain good statistics by repetition of the waves and measurements and thus capable of determining the reliability of the method. During the first experiments, the probability of emission and detection of a single electron with the wave was 96 and 92%, respectively.

The innovation: aligning the fish

It is not possible to differentiate between the electrons "fish," but they can be differently aligned because they rotate like little spinning tops. This is called the "spin" of the electron. For example one can align a fish with "its head upwards," let it be transported with the wave, and then detect it again at the target quantum dot still having "its head upwards." The time for the spin to change is longer than the surfing time on the wave, so the probability of this occurring is very high. The quantum bits of the future will also consist of such spin-polarized electrons.

The researchers attained their results with samples prepared by so-called molecular beam epitaxy at the chair of Applied Solid State Physics at the Ruhr University Bochum. They were structured in Tokyo and subsequently measured in Grenoble. But not only the samples, also a further development of this concept originates from Bochum: Prof. Wieck already published his vision of an electron directional coupler with two parallel one-dimensional channels, in which the electrons can skip from one to the other channel, 21 years ago. The research team has in the meantime realized this vision based on the results presented here. A further publication is therefore to follow shortly.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sylvain Hermelin, Shintaro Takada, Michihisa Yamamoto, Seigo Tarucha, Andreas D. Wieck, Laurent Saminadayar, Christopher Bδuerle, Tristan Meunier. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature, 2011; 477 (7365): 435 DOI: 10.1038/nature10416

Cite This Page:

Ruhr-Universitaet-Bochum. "Like fish on waves, electrons go surfing." ScienceDaily. ScienceDaily, 28 September 2011. <www.sciencedaily.com/releases/2011/09/110922093724.htm>.
Ruhr-Universitaet-Bochum. (2011, September 28). Like fish on waves, electrons go surfing. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2011/09/110922093724.htm
Ruhr-Universitaet-Bochum. "Like fish on waves, electrons go surfing." ScienceDaily. www.sciencedaily.com/releases/2011/09/110922093724.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) — A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) — The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) — The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins