Featured Research

from universities, journals, and other organizations

Guidelines set out for obtaining more efficient latex

Date:
October 5, 2011
Source:
Elhuyar Fundazioa
Summary:
A chemical engineer has presented guidelines for obtaining better quality and more efficient latex,. This involves a strategy which facilitates obtaining a more concentrated material without it losing its handling properties.

Chemical engineer Ms Inκs Mariz has presented guidelines for obtaining better quality and more efficient latex, in a PhD thesis defended at the University of the Basque Country (UPV/EHU). This involves a strategy which facilitates obtaining a more concentrated material without it losing its handling properties. In this way it is able to cover the substrate in question with fewer layers than is usual, it dries quicker, its formulation is more flexible and enables savings in storage and in transport.

The thesis is entitled High solids content low viscosity latexes with small particle size. A number of articles have also been published based on the research, including the one in Polymer Journal.

The research by Ms Mariz is based on the synthesis of latex with a high solid content. Latex is an aqueous emulsion and so, with this synthesis, the idea is to concentrate the greatest percentage of solid material possible within this emulsion, in order to obtain a more efficient and better quality material. Nevertheless, this concentration has to be limited as, otherwise, the latex will be too viscous and difficult to handle. Viscosity can be reduced by increasing the size of the particles used for the synthesis, but previous studies show that the largest ones are not those most propitious for forming films. As a consequence, the objective of this thesis was to set out a strategy for producing latex with high solid content and low viscosity, but with particles of a size less than 350 nanometres.

Unimodal and bimodal

Ms Mariz undertook several trials before obtaining the desired particle size distribution (PSD); i.e. that which maximises the packing (the compacted organisation) of the particles, always respecting the determined range of sizes.

In the first place, this mentioned synthesis with unimodal PSD (all particles of equal size) was investigated. Provoking polymerisation in a semi-continuous reactor, acrylic latexes were obtained which, with particles less than 350 nanometres, had a 61 wt% (concentration index) of solids content and with a reasonable viscosity. It was also verified that this type of latex stays stable with an ionic surfactant concentration (substance that facilitates and stabilises emulsions) less than 1 wt% with respect to the compound.

Subsequently, the synthesis of latex with high solids content with bimodal PSDs was tackled, i.e. those with particles of different sizes. In this way, the smallest particles cover spaces that are left between the largest particles, thus increasing the solids content and maximising packing.

The synthesis of unimodal latex is easier because the growth of the particles is known a priori. But, as regards bimodal particles, Ms Mariz had to design a strategy that would make this equally predictable. Thanks to this strategy, it was known a priori what polymerisation reaction (initiated in semi-continuous reactor) formula was required for obtaining the desired result: that is, a bimodal latex which, with particle sizes less than 350 nanometres, has high solid content (up to 70 wt%) and the lowest possible viscosity.

Practical application

Finally, water-based paints with latex of different PSDs have been formulated and it has been shown that particles sized less than 350 nanometres produce better results. Concretely, the latex with high solids content and small particle size has given rise to paints with enhanced properties, such as higher brilliance and elasticity and less drying time. They also show a low content in volatile organic components, given that a greater concentration of solids in the aqueous emulsion of the latex means, at the same time, a lower content of solvents.


Story Source:

The above story is based on materials provided by Elhuyar Fundazioa. Note: Materials may be edited for content and length.


Cite This Page:

Elhuyar Fundazioa. "Guidelines set out for obtaining more efficient latex." ScienceDaily. ScienceDaily, 5 October 2011. <www.sciencedaily.com/releases/2011/10/111005110239.htm>.
Elhuyar Fundazioa. (2011, October 5). Guidelines set out for obtaining more efficient latex. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2011/10/111005110239.htm
Elhuyar Fundazioa. "Guidelines set out for obtaining more efficient latex." ScienceDaily. www.sciencedaily.com/releases/2011/10/111005110239.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins