Featured Research

from universities, journals, and other organizations

Stem cells, signaling pathways identified in lung repair

Date:
October 12, 2011
Source:
National Jewish Health
Summary:
Researchers have identified cells and signaling molecules that trigger the repair of injured lungs. The scientists report that destruction of lung tissue in mice induces smooth muscle cells surrounding the airways to secrete a protein known as fibroblast growth factor 10, which induces surviving epithelial cells in the airways to revert to a stem-cell state, proliferate, repair and repopulate the lining of the lungs.

Researchers at National Jewish Health have identified cells and signaling molecules that trigger the repair of injured lungs. Stijn De Langhe, PhD, and his colleagues report October 10, 2011, online in the Journal of Clinical Investigation, that destruction of lung tissue in mice induces smooth muscle cells surrounding the airways to secrete a protein known as fibroblast growth factor 10 (FGF10), which induces surviving epithelial cells in the airways to revert to a stem-cell state, proliferate, repair and repopulate the lining of the lungs.

Related Articles


"The repair process in the lungs turns out to be very similar to the developmental process that originally formed the lungs," said Dr. De Langhe, Assistant Professor of Pediatrics at National Jewish Health. "These findings identify important cells and signaling molecules that could be used in therapeutic strategies to promote repair of injured lungs and turn off aberrant repair that occurs in many lung diseases."

In mouse lungs, most cells lining the airways were destroyed as a result of exposure to toxic substances napthalene, ozone or bleomycin. One type, known as variant Clara cells, however, resisted damage from those substances.

In a series of experiments, Dr. De Langhe and his colleagues showed that nearby parabronchial smooth muscle cells began secreting FGF10 soon after the injury. The FGF caused the variant Clara cells to revert to their original stem-cell state. They proliferated and restored the full complement of epithelial cells lining the airways, thus repairing the injury.

These findings could be valuable for both turning on and off the repair process. In acute lung injury, it could be valuable to augment the repair process. But in other diseases, such as asthma and pulmonary fibrosis, the repair process goes awry leading to scarring or build up of excess cells in the airways. Turning off the repair process might help treat those diseases.


Story Source:

The above story is based on materials provided by National Jewish Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thomas Volckaert, Erik Dill, Alice Campbell, Caterina Tiozzo, Susan Majka, Saverio Bellusci, Stijn P. De Langhe. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI58097

Cite This Page:

National Jewish Health. "Stem cells, signaling pathways identified in lung repair." ScienceDaily. ScienceDaily, 12 October 2011. <www.sciencedaily.com/releases/2011/10/111011121418.htm>.
National Jewish Health. (2011, October 12). Stem cells, signaling pathways identified in lung repair. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2011/10/111011121418.htm
National Jewish Health. "Stem cells, signaling pathways identified in lung repair." ScienceDaily. www.sciencedaily.com/releases/2011/10/111011121418.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins