Featured Research

from universities, journals, and other organizations

Plankton's shifting role in deep sea carbon storage explored

Date:
October 17, 2011
Source:
San Francisco State University
Summary:
The tiny phytoplankton Emiliania huxleyi, invisible to the naked eye, plays an outsized role in drawing carbon from the atmosphere and sequestering it deep in the seas. But this role may change as ocean water becomes warmer and more acidic, according to a research team.

The tiny phytoplankton Emiliania huxleyi, invisible to the naked eye, plays an outsized role in drawing carbon from the atmosphere and sequestering it deep in the seas. But this role may change as ocean water becomes warmer and more acidic, according to a San Francisco State University research team.

Related Articles


In a study published this week in the journal Global Change Biology, SF State Assistant Professor of Biology Jonathon Stillman and colleagues show how climate-driven changes in nitrogen sources and carbon dioxide levels in seawater could work together to make Emiliania huxleyi a less effective agent of carbon storage in the deep ocean, the world's largest carbon sink.

Changes to this massive carbon sink could have a critical effect on the planet's future climate, Stillman said, especially as atmospheric carbon dioxide levels continue to rise sharply as a result of fossil fuel burning and other human activities.

While floating free in the sunny top layers of the oceans, the phytoplankton develop elaborate plates of calcified armor called coccoliths. The coccoliths form a hard and heavy shell that eventually sinks to the ocean depths. "About 80 percent of inorganic carbon trapped down there is from coccoliths like these," said Stillman.

Stillman and his colleagues wanted to discover how ocean acidification and changes in the ocean's nitrogen cycle -- both hallmarks of climate warming -- might effect coccolith development. So they raised more than 200 generations of Emiliania huxleyi in the lab, adjusting carbon dioxide levels and the type of nitrogen in the phytoplankton's seawater bath.

They found that high levels of carbon dioxide -- which make the water more acidic -- along with a shift in the prevailing nitrogen type from nitrates to ammonium -- "had a synergistic effect" on the phytoplankton's biology and growth.

In particular, coccoliths formed under conditions of high carbon dioxide and high ammonium levels were incomplete or hollow, and contained less than the usual amount of inorganic carbon, the researchers noted.

"The ratio of inorganic to organic carbon is important," Stillman explained. "As inorganic carbon increases, it adds more ballast to the hard shell, which makes it sink and makes it more likely to be transported to the deep ocean. Without this, the carbon is more likely to be recycled into the Earth's atmosphere."

"Our results suggest in the future there will be overall lower amounts of calcification and overall lower amount of transport of carbon to the deep ocean," he added.

Emiliania huxleyi typically use nitrates to make proteins, but this form of nitrogen may be in shorter supply for the phytoplankton as the world's oceans grow warmer and more acidic, Stillman and colleagues suggest. In the open ocean, nitrates are upwelled from deep waters, but a thickening layer of warmer surface water could inhibit this upwelling. At the same time, the warmer temperatures favor bacteria that turn recycled nitrogen from surface waters and the atmosphere into ammonium, and acidification inhibits the bacteria that turn ammonium into nitrate.

"It is likely that in the future, the ocean surface will contain more ammonium," which the phytoplankton will assimilate instead of nitrates, Stillman suggested. "Metabolizing nitrogen as ammonium versus nitrates requires different biochemical constituents that impact how well the cells make their coccoliths. They will survive just fine, but their biology will be different as a result."

The study by Stillman and colleagues is the first to look at the intertwined effects of ocean acidification and changes in nitrogen on phytoplankton like Emiliania huxleyi. It's also one of the first studies to observe these effects continuously over a long time scale, "so the responses of the phytoplankton are likely what we'll see in the ocean itself," Stillman said.

Stephane Lefebrve, the SF State postdoctoral student who developed the experiments for the study, said he is now looking for phytoplankton genes that "will help us to build the genetic blueprint of their responses to elevated carbon dioxide and a nitrogen source."

Lefebvre, Ina Benner, Alexander Parker, Michelle Drake, Pascale Rossignol, Kristine Okimura, Tomoko Komada, and Edward Carpenter, all from SF State's Romberg Tiburon Center for Environmental Studies, were co-authors on the Global Change Biology study.


Story Source:

The above story is based on materials provided by San Francisco State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephane C. Lefebvre, Ina Benner, Jonathon H. Stillman, Alexander E. Parker, Michelle K. Drake, Pascale E. Rossignol, Kristine M. Okimura, Tomoko Komada, Edward J. Carpenter. Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: potential implications of ocean acidification for the carbon cycle. Global Change Biology, 2011; DOI: 10.1111/j.1365-2486.2011.02575.x

Cite This Page:

San Francisco State University. "Plankton's shifting role in deep sea carbon storage explored." ScienceDaily. ScienceDaily, 17 October 2011. <www.sciencedaily.com/releases/2011/10/111013162934.htm>.
San Francisco State University. (2011, October 17). Plankton's shifting role in deep sea carbon storage explored. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/10/111013162934.htm
San Francisco State University. "Plankton's shifting role in deep sea carbon storage explored." ScienceDaily. www.sciencedaily.com/releases/2011/10/111013162934.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins