Featured Research

from universities, journals, and other organizations

Good housekeeping maintains a healthy liver

Date:
October 17, 2011
Source:
Rockefeller University Press
Summary:
Differences in the levels of two key metabolic enzymes may explain why some people are more susceptible to liver damage, according to a new study.

A new study in the Journal of Cell Biology suggests that differential expression of GAPDH and NDPK, two key metabolic enzymes, may explain why some people are more susceptible to liver damage.Compared to control cells (left), liver cells lacking GAPDH (right) show increased levels of reactive oxygen species (green) after treatment with the liver-damaging drug DDC.
Credit: Image courtesy of Snider, N.T., et al. 2011. J. Cell Biol. doi:10.1083/jcb.201102142

Differences in the levels of two key metabolic enzymes may explain why some people are more susceptible to liver damage, according to a study in the October 17 issue of the Journal of Cell Biology.

Some forms of liver disease, particularly steatohepatitis, are marked by the formation of misfolded protein aggregates called Mallory-Denk bodies (MDBs). Not all patients display these aggregates, however, and some research suggests that MDBs are more common in patients of Hispanic origin. Different strains of mice also show different susceptibilities to MDB formation when their livers are damaged by the drug DDC, which induces oxidative stress. A team led by researchers from the University of Michigan analyzed the proteomes of livers from two different mouse strains to investigate the cause of their different sensitivities to DDC.

Many metabolic and oxidative stress-related enzymes were expressed at differing levels in the livers of C57BL (MDB-susceptible) and C3H (MDB-resistant) mice, resulting in higher levels of reactive oxygen species in C57BL liver cells after DDC treatment. Prominent among these enzymes were two general "housekeeping" proteins: the metabolic enzyme GAPDH and the energy-generating protein NDPK, both of which showed reduced expression in C57BL livers and were decreased further by DDC treatment.

Depleting GAPDH or NDPK by RNAi elevated reactive oxygen species levels similarly to DDC treatment, whereas overexpressing GAPDH prevented DDC from inducing reactive oxygen species production in C57BL liver cells. The authors think that low GAPDH and NDPK expression causes C57BL livers to be metabolically and oxidatively stressed even under normal conditions and therefore more sensitive to additional stresses like DDC treatment. The researchers also found that GAPDH is localized in protein aggregates in cirrhotic patient livers, suggesting that similar mechanisms may contribute to liver disease severity in humans.


Story Source:

The above story is based on materials provided by Rockefeller University Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. T. Snider, S. V. W. Weerasinghe, A. Singla, J. M. Leonard, S. Hanada, P. C. Andrews, A. S. Lok, M. B. Omary. Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation. The Journal of Cell Biology, 2011; 195 (2): 217 DOI: 10.1083/jcb.201102142

Cite This Page:

Rockefeller University Press. "Good housekeeping maintains a healthy liver." ScienceDaily. ScienceDaily, 17 October 2011. <www.sciencedaily.com/releases/2011/10/111017124240.htm>.
Rockefeller University Press. (2011, October 17). Good housekeeping maintains a healthy liver. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2011/10/111017124240.htm
Rockefeller University Press. "Good housekeeping maintains a healthy liver." ScienceDaily. www.sciencedaily.com/releases/2011/10/111017124240.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins