Featured Research

from universities, journals, and other organizations

CSI-style investigation of meteorite hits on Earth

Date:
October 31, 2011
Source:
University of Leicester
Summary:
Volcanologists have forensically reconstructed the impact of a meteorite on Earth and how debris was hurled from the crater to devastate the surrounding region.

Meteorite impact ejecta (left) compared with volcanic deposits (right) showing closely similar structures made of dust particles. The top two photos show accretionary lapilli in density current deposits, whereas bottom two photos show pellets that formed when dust in the atmosphere clumped together and simply fell onto the land surface.
Credit: From Branney and Brown 2011 (Journal of Geology 199, 275-292)

Volcanologists from the Universities of Leicester and Durham have forensically reconstructed the impact of a meteorite on Earth and how debris was hurled from the crater to devastate the surrounding region.

Related Articles


New research by Mike Branney, of the University of Leicester's Department of Geology, and Richard Brown, University of Durham, shows that some aspects of giant meteorite impacts onto Earth may mimic the behaviour of large volcanic eruptions.

Meteorite impacts are more common than is popularly appreciated -- but what happens when the meteorite hits? Direct observation is understandably difficult, but researchers pick through impact debris that has been spared the ravages of erosion, to forensically reconstruct the catastrophic events.

Mike Branney and Richard Brown analysed an ejecta layer derived from the impact of a huge meteorite and discovered that much of the ejected debris moved across the ground as rapid, dense, ground-hugging currents of gas and debris, remarkably similar to the awesome pyroclastic density currents that flow radially outwards from explosive volcanoes.

Dr Branney said: "In particular, the way that ash and dust stick together seems identical. Moist ash from explosive volcanoes sticks together in the atmosphere to fall out as mm-sized pellets. Where these drop back into a hot pyroclastic density current, they grow into larger layered structures, known as accretionary lapilli."

The researchers studied a finely preserved deposit in northwest Scotland from a huge impact that occurred a billion years ago. It shows both types of these 'volcanic' particles -- pellets and lapilli -- are produced.

Dr Brown added: "This reveals that that the 10 meter-thick layer, which has been traced for over 50 km along the Scottish coast, was almost entirely emplaced as a devastating density current that sped outwards from the point of impact -- just like a density current from a volcano. Only the uppermost few centimetres actually fell out through the atmosphere. "

The Leicester and Durham scientists say that an improved understanding of what happens when large objects hits Earth will help us understand how these catastrophic events may have affected life on the planet in the past ...and possibly in the future.


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael J. Branney, Richard J. Brown. Impactoclastic Density Current Emplacement of Terrestrial Meteorite-Impact Ejecta and the Formation of Dust Pellets and Accretionary Lapilli: Evidence from Stac Fada, Scotland. The Journal of Geology, 2011; 119 (3): 275 DOI: 10.1086/659147

Cite This Page:

University of Leicester. "CSI-style investigation of meteorite hits on Earth." ScienceDaily. ScienceDaily, 31 October 2011. <www.sciencedaily.com/releases/2011/10/111018095124.htm>.
University of Leicester. (2011, October 31). CSI-style investigation of meteorite hits on Earth. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/10/111018095124.htm
University of Leicester. "CSI-style investigation of meteorite hits on Earth." ScienceDaily. www.sciencedaily.com/releases/2011/10/111018095124.htm (accessed October 24, 2014).

Share This



More Space & Time News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins