Featured Research

from universities, journals, and other organizations

Magnetic nanoswitch for thermoelectric voltages

Date:
October 26, 2011
Source:
Physikalisch-Technische Bundesanstalt (PTB)
Summary:
Thanks to a recently discovered effect in magnetic tunnel structures, thermoelectric voltages in nano-electronic junctions can be controlled.

A magnetic tunnel structure consists of two magnetic layers (red and blue) separated only by a thin insulation layer of approx. 1 nm (grey) – the so-called "tunnel barrier". If a temperature difference ΔT is generated via the barrier, then the thermoelectric voltage VTh drops between the hot (red) layer and the cold (blue) layer. If the magnetic orientation, e.g. of the hot layer compared to that of the cold layer (arrows), is changed, this leads to a strong change in the measured thermoelectric voltage.
Credit: Schumacher/PTB

Thanks to a recently discovered effect in magnetic tunnel structures, thermoelectric voltages in nano-electronic junctions can be controlled.

The heat which occurs in tiny computer processors might soon be no longer useless or even a problem. On the contrary: It could be used to switch these processors more easily or to store data more efficiently! These are two of the several potential applications made possible by a discovery made at the Physikalisch-Technische Bundesanstalt (PTB). This so-called "thermoelectric voltage" may well be very interesting -- mainly for the use of nano-junctions, i.e. small components based on magnetic tunnel structures. The results obtained by the researchers have been published in the current issue of the journal Physical Review Letters.

Today, magnetic tunnel structures already occur in various areas of information technology. They are used, for example, as magnetic storage cells in non-volatile magnetic memory chips (the so-called "MRAMs" -- Magnetic Random Access Memories) or as highly sensitive magnetic sensors to read out the data stored on hard disks. The new effect discovered at PTB within the scope of a research collaboration with Bielefeld University and the Singulus company could, in the future, add a new application to the existing ones: monitoring and controlling thermoelectric voltages and currents in highly integrated electronic circuits.

Magnetic tunnel structures consist of two magnetic layers separated only by a thin insulation layer of approx. 1 nm -- the so-called "tunnel barrier." The magnetic orientation of the two layers inside the tunnel structure has a great influence on its electrical properties: if the magnetic moments of the two layers are parallel to each other, the resistance is low; if, on the contrary, they are opposed to each other, the resistance is high. The change in the resistance when switching the magnetisation can amount to more than 100 %. It is therefore possible to control the electric current flowing through the magnetic tunnel structure efficiently by simply switching the magnetisation.

The work carried out by the PTB researchers now shows that, besides the electric current, also the thermal current flowing through the tunnel structure can be influenced by switching the magnetisation. In their experiments, the scientists generated a temperature difference between the two magnetic layers and investigated the electric voltage (the so-called "thermoelectric voltage") generated hereby. It turned out that the thermoelectric voltage depends on the magnetic orientation of the two layers nearly as strongly as the electric resistance. By switching the magnetisation, it is therefore possible to control the thermoelectric voltage and, ultimately, also the thermal current flowing through the specimen.

In future, this new effect could be applied, for example, by using and converting the energy of waste heat occurring in integrated circuits in a targeted way. Furthermore, the discovery of this so-called "tunnel magneto thermoelectric voltage" is a milestone in the research field "spin calorics" -- a field developing at a fast pace -- which is currently promoted by the Deutsche Forschungsgemeinschaft (DFG) within the scope of a large-scale, 6-year priority programme.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt (PTB). Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Liebing, S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, H. Schumacher. Tunneling Magnetothermopower in Magnetic Tunnel Junction Nanopillars. Physical Review Letters, 2011; 107 (17) DOI: 10.1103/PhysRevLett.107.177201

Cite This Page:

Physikalisch-Technische Bundesanstalt (PTB). "Magnetic nanoswitch for thermoelectric voltages." ScienceDaily. ScienceDaily, 26 October 2011. <www.sciencedaily.com/releases/2011/10/111024084234.htm>.
Physikalisch-Technische Bundesanstalt (PTB). (2011, October 26). Magnetic nanoswitch for thermoelectric voltages. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/10/111024084234.htm
Physikalisch-Technische Bundesanstalt (PTB). "Magnetic nanoswitch for thermoelectric voltages." ScienceDaily. www.sciencedaily.com/releases/2011/10/111024084234.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins