Featured Research

from universities, journals, and other organizations

Magnetic nanoswitch for thermoelectric voltages

Date:
October 26, 2011
Source:
Physikalisch-Technische Bundesanstalt (PTB)
Summary:
Thanks to a recently discovered effect in magnetic tunnel structures, thermoelectric voltages in nano-electronic junctions can be controlled.

A magnetic tunnel structure consists of two magnetic layers (red and blue) separated only by a thin insulation layer of approx. 1 nm (grey) – the so-called "tunnel barrier". If a temperature difference ΔT is generated via the barrier, then the thermoelectric voltage VTh drops between the hot (red) layer and the cold (blue) layer. If the magnetic orientation, e.g. of the hot layer compared to that of the cold layer (arrows), is changed, this leads to a strong change in the measured thermoelectric voltage.
Credit: Schumacher/PTB

Thanks to a recently discovered effect in magnetic tunnel structures, thermoelectric voltages in nano-electronic junctions can be controlled.

The heat which occurs in tiny computer processors might soon be no longer useless or even a problem. On the contrary: It could be used to switch these processors more easily or to store data more efficiently! These are two of the several potential applications made possible by a discovery made at the Physikalisch-Technische Bundesanstalt (PTB). This so-called "thermoelectric voltage" may well be very interesting -- mainly for the use of nano-junctions, i.e. small components based on magnetic tunnel structures. The results obtained by the researchers have been published in the current issue of the journal Physical Review Letters.

Today, magnetic tunnel structures already occur in various areas of information technology. They are used, for example, as magnetic storage cells in non-volatile magnetic memory chips (the so-called "MRAMs" -- Magnetic Random Access Memories) or as highly sensitive magnetic sensors to read out the data stored on hard disks. The new effect discovered at PTB within the scope of a research collaboration with Bielefeld University and the Singulus company could, in the future, add a new application to the existing ones: monitoring and controlling thermoelectric voltages and currents in highly integrated electronic circuits.

Magnetic tunnel structures consist of two magnetic layers separated only by a thin insulation layer of approx. 1 nm -- the so-called "tunnel barrier." The magnetic orientation of the two layers inside the tunnel structure has a great influence on its electrical properties: if the magnetic moments of the two layers are parallel to each other, the resistance is low; if, on the contrary, they are opposed to each other, the resistance is high. The change in the resistance when switching the magnetisation can amount to more than 100 %. It is therefore possible to control the electric current flowing through the magnetic tunnel structure efficiently by simply switching the magnetisation.

The work carried out by the PTB researchers now shows that, besides the electric current, also the thermal current flowing through the tunnel structure can be influenced by switching the magnetisation. In their experiments, the scientists generated a temperature difference between the two magnetic layers and investigated the electric voltage (the so-called "thermoelectric voltage") generated hereby. It turned out that the thermoelectric voltage depends on the magnetic orientation of the two layers nearly as strongly as the electric resistance. By switching the magnetisation, it is therefore possible to control the thermoelectric voltage and, ultimately, also the thermal current flowing through the specimen.

In future, this new effect could be applied, for example, by using and converting the energy of waste heat occurring in integrated circuits in a targeted way. Furthermore, the discovery of this so-called "tunnel magneto thermoelectric voltage" is a milestone in the research field "spin calorics" -- a field developing at a fast pace -- which is currently promoted by the Deutsche Forschungsgemeinschaft (DFG) within the scope of a large-scale, 6-year priority programme.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt (PTB). Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Liebing, S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, H. Schumacher. Tunneling Magnetothermopower in Magnetic Tunnel Junction Nanopillars. Physical Review Letters, 2011; 107 (17) DOI: 10.1103/PhysRevLett.107.177201

Cite This Page:

Physikalisch-Technische Bundesanstalt (PTB). "Magnetic nanoswitch for thermoelectric voltages." ScienceDaily. ScienceDaily, 26 October 2011. <www.sciencedaily.com/releases/2011/10/111024084234.htm>.
Physikalisch-Technische Bundesanstalt (PTB). (2011, October 26). Magnetic nanoswitch for thermoelectric voltages. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/10/111024084234.htm
Physikalisch-Technische Bundesanstalt (PTB). "Magnetic nanoswitch for thermoelectric voltages." ScienceDaily. www.sciencedaily.com/releases/2011/10/111024084234.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) — The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) — Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins