Featured Research

from universities, journals, and other organizations

First-of-a-kind tension wood study broadens biofuels research

Date:
October 25, 2011
Source:
DOE/Oak Ridge National Laboratory
Summary:
Taking a cue from Mother Nature, researchers have undertaken a first-of-its-kind study of a naturally occurring phenomenon in trees to spur the development of more efficient bioenergy crops. Tension wood, which forms naturally in hardwood trees in response to bending stress, is known to possess unique features that render it desirable as a bioenergy feedstock. Although individual elements of tension wood have been studied previously, the team is the first to use a comprehensive suite of techniques to systematically characterize tension wood and link the wood's properties to sugar release. Plant sugars, known as cellulose, are fermented into alcohol for use as biofuel.

Poplar stems (left) respond to bending stress by producing tension wood, which has characteristics desirable in a bioenergy feedstock. Electron micrographs from a comprehensive BESC study reveal how tension wood (bottom right) develops a secondary cell wall layer, in contrast to normal wood (top right).
Credit: Image courtesy of DOE/Oak Ridge National Laboratory

Taking a cue from Mother Nature, researchers at the Department of Energy's BioEnergy Science Center have undertaken a first-of-its-kind study of a naturally occurring phenomenon in trees to spur the development of more efficient bioenergy crops.

Tension wood, which forms naturally in hardwood trees in response to bending stress, is known to possess unique features that render it desirable as a bioenergy feedstock. Although individual elements of tension wood have been studied previously, the BESC team is the first to use a comprehensive suite of techniques to systematically characterize tension wood and link the wood's properties to sugar release. Plant sugars, known as cellulose, are fermented into alcohol for use as biofuel.

"There has been no integrated study of tension stress response that relates the molecular and biochemical properties of the wood to the amount of sugar that is released," said Oak Ridge National Laboratory's Udaya Kalluri, a co-author on the study.

The work, published in Energy & Environmental Science, describes tension wood properties including an increased number of woody cells, thicker cell walls, more crystalline forms of cellulose and lower lignin levels, all of which are desired in an biofuel crop.

"Tension wood in poplar trees has a special type of cell wall that is of interest because it is composed of more than 90 percent cellulose, whereas wood is normally composed of 40 to 55 percent cellulose," Kalluri said. "If you increase the cellulose in your feedstock material, then you can potentially extract more sugars as the quality of the wood has changed. Our study confirms this phenomenon."

The study's cohesive approach also provides a new perspective on the natural plant barriers that prevent the release of sugars necessary for biofuel production, a trait scientists term as recalcitrance.

"Recalcitrance of plants is ultimately a reflection of a series of integrated plant cell walls, components, structures and how they are put together," said co-author Arthur Ragauskas of Georgia Institute of Technology. "This paper illustrates that you need to use an holistic, integrated approach to study the totality of recalcitrance."

Using the current study as a model, the researchers are extending their investigation of tension wood down to the molecular level and hope to eventually unearth the genetic basis behind its desirable physical features. Although tension wood itself is not considered to be a viable feedstock option, insight gleaned from studying its unique physical and molecular characteristics could be used to design and select more suitably tailored bioenergy crops.

"This study exemplifies how the integrated model of BESC can bring together such unique research expertise," said BESC director Paul Gilna. "The experimental design in itself is reflective of the multidisciplinary nature of a DOE Bioenergy Research Center."

The research team also includes Georgia Institute of Technology's Marcus Foston, Chris Hubbell, Reichel Sameul, Seokwon Jung and Hu Fan; National Renewable Energy Laboratory's Robert Sykes, Shi-You Ding, Yining Zeng, Erica Gjersing and Mark Davis, and ORNL's Sara Jawdy and Gerald Tuskan.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marcus Foston, Christopher A. Hubbell, Reichel Samuel, Seokwon Jung, Hu Fan, Shi-You Ding, Yining Zeng, Sara Jawdy, Mark Davis, Robert Sykes, Erica Gjersing, Gerald A. Tuskan, Udaya Kalluri, Arthur J. Ragauskas. Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy & Environmental Science, 2011; DOI: 10.1039/C1EE02073K

Cite This Page:

DOE/Oak Ridge National Laboratory. "First-of-a-kind tension wood study broadens biofuels research." ScienceDaily. ScienceDaily, 25 October 2011. <www.sciencedaily.com/releases/2011/10/111025163121.htm>.
DOE/Oak Ridge National Laboratory. (2011, October 25). First-of-a-kind tension wood study broadens biofuels research. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2011/10/111025163121.htm
DOE/Oak Ridge National Laboratory. "First-of-a-kind tension wood study broadens biofuels research." ScienceDaily. www.sciencedaily.com/releases/2011/10/111025163121.htm (accessed April 25, 2014).

Share This



More Plants & Animals News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins